PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS

被引:139
作者
CVITANOVIC, P
机构
[1] Niels Bohr Institute, DK-2100 Copenhagen Ø
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
关键词
D O I
10.1016/0167-2789(91)90227-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A description of a low-dimensional deterministic chaotic system in terms of unstable periodic orbits (cycles) is a powerful tool for theoretical and experimental analysis of both classical and quantum deterministic chaos, comparable to the familiar perturbation expansions for nearly integrable systems. The infinity of orbits characteristic of a chaotic dynamical system can be resummed and brought to a Selberg product form, dominated by the short cycles, and the eigenvalue spectrum of operators associated with the dynamical flow can then be evaluated in terms of unstable periodic orbits. Methods for implementing this computation for finite subshift dynamics are introduced.
引用
收藏
页码:138 / 151
页数:14
相关论文
共 50 条
[31]   PERIODIC-ORBITS, BIFURCATIONS, AND QUANTUM-MECHANICAL EIGENFUNCTIONS AND SPECTRA [J].
FOUNARGIOTAKIS, M ;
FARANTOS, SC ;
CONTOPOULOS, G ;
POLYMILIS, C .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (03) :1389-1402
[32]   PERIODIC-ORBITS IN ELLIPTICAL GALAXIES [J].
DAVOUST, E .
ASTRONOMY & ASTROPHYSICS, 1983, 125 (01) :101-108
[33]   PERIODIC-ORBITS OF THE SAWTOOTH MAPS [J].
BIRD, N ;
VIVALDI, F .
PHYSICA D, 1988, 30 (1-2) :164-176
[34]   Periodic-orbits picture of fractal magnetoconductance fluctuations in quantum dots [J].
Budiyono, A ;
Nakamura, K .
CHAOS SOLITONS & FRACTALS, 2003, 17 (01) :89-97
[35]   PERIODIC-ORBITS CLOSE TO THAT OF THE MOON [J].
VALSECCHI, GB ;
PEROZZI, E ;
ROY, AE ;
STEVES, BA .
ASTRONOMY & ASTROPHYSICS, 1993, 271 (01) :308-314
[36]   PERIODIC-ORBITS AND MOLECULAR PHOTOABSORPTION [J].
ZOBAY, O ;
ALBER, G .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1993, 26 (17) :L539-L546
[37]   STABILIZING HIGHER PERIODIC-ORBITS [J].
PASKOTA, M ;
MEES, AI ;
TEO, KL .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (02) :457-460
[38]   PERIODIC-ORBITS IN STRONG BARS [J].
TERZIDES, C ;
MICHALODIMITRAKIS, M .
ASTROPHYSICS AND SPACE SCIENCE, 1985, 115 (02) :377-385
[39]   UNSTABLE PERIODIC-ORBITS AND PREDICTION [J].
PAWELZIK, K ;
SCHUSTER, HG .
PHYSICAL REVIEW A, 1991, 43 (04) :1808-1812
[40]   A SOLUTION USING PERIODIC-ORBITS [J].
BLAINE, L .
FIBONACCI QUARTERLY, 1992, 30 (04) :371-372