ORDERING TREES BY ALGEBRAIC CONNECTIVITY

被引:61
作者
GRONE, R
MERRIS, R
机构
[1] SAN DIEGO STATE UNIV,DEPT MATH SCI,SAN DIEGO,CA 92182
[2] CALIF STATE UNIV HAYWARD,DEPT MATH & COMP SCI,HAYWARD,CA 94542
基金
中国国家自然科学基金;
关键词
D O I
10.1007/BF01787574
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n vertices. Denote by L(G) the difference between the diagonal matrix of vertex degrees and the adjacency matrix. It is not hard to see that L(G) is positive semidefinite symmetric and that its second smallest eigenvalue, a(G) > 0, if and only if G is connected. This observation led M. Fiedler to call a(G) the algebraic connectivity of G. Given two trees, T1 and T2, the authors explore a graph theoretic interpretation for the difference between a(T1) and a(T2). © 1990 Springer-Verlag.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 18 条