On finite groups with Hall normally embedded Schmidt subgroups

被引:0
|
作者
Kniahina, Viktoryia N. [1 ]
Monakhov, Victor S. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Sovetskaya Str 104, Gomel 246019, BELARUS
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
finite group; Hall subgroup; normal subgroup; derived subgroup; nilpotent subgroup;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a finite group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [1] Finite groups with hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 93 - 100
  • [2] Finite groups with Hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 668 - 675
  • [3] Finite groups with Hall normally embedded subgroups
    Guo, Qinghong
    He, Xuanli
    Huang, Muhong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (09)
  • [4] Finite groups with Hall Schmidt subgroups
    Bazhanova, E. N.
    Vedernikov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (03): : 3 - 11
  • [5] On Hall normally embedded subgroups and the p-nilpotency of finite groups
    He, Xuanli
    Wang, Jing
    Sun, Qinhui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1428 - 1437
  • [6] Finite groups with hall Schmidt subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 341 - 350
  • [7] On hall subnormally embedded subgroups of finite groups
    Adolfo Ballester-Bolinches
    John Cossey
    ShouHong Qiao
    Monatshefte für Mathematik, 2016, 181 : 753 - 760
  • [8] On hall subnormally embedded subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Qiao, ShouHong
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04): : 753 - 760
  • [9] Finite group with given Hall normally embedded subgroups
    He, Xuanli
    Sun, Qinhui
    Wang, Jing
    RICERCHE DI MATEMATICA, 2024, 74 (1) : 585 - 594
  • [10] Finite groups with permutable Hall subgroups
    Yin, Xia
    Yang, Nanying
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (05) : 1265 - 1275