ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM FOR SYSTEMS OF NONLINEAR IMPULSIVE EQUATIONS WITH FIXED IMPULSES POINTS

被引:0
作者
Ashordia, Malkhaz [1 ,2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6 Tamarashvili St, GE-0177 Tbilisi, Georgia
[2] Sokhumi State Univ, 9 A Politkovskaia St, GE-0186 Tbilisi, Georgia
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2018年 / 74卷
基金
美国国家科学基金会;
关键词
Antiperiodic problem; nonlinear systems; impulsive equations; fixed impulses points; well-posedness; effective conditions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The antiperiodic problem for systems of nonlinear impulsive equations with fixed points of impulses actions is considered. The sufficient (among them effective) conditions for the well-posedness of this problem are given.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 16 条
[1]  
Akhalaia S, 2009, GEORGIAN MATH J, V16, P597
[2]  
[Anonymous], 1995, WORLD SCI SERIES N A
[3]  
Ashordia M, 2005, MEM DIFFER EQU MATH, V36, P1
[4]  
Ashordia M, 2006, MEM DIFFER EQU MATH, V37, P154
[5]  
Ashordia M., 1994, GEORGIAN MATH J, P115
[6]  
Ashordia M, 2008, MEM DIFFER EQU MATH, V43, P153
[7]   On the solvability of general boundary value problems for systems of nonlinear impulsive equations with finite and fixed points of impulse actions [J].
Ashordia, Malkhaz ;
Ekhvaia, Goderdzi ;
Kekelia, Nestan .
BOUNDARY VALUE PROBLEMS, 2014, :1-17
[8]   On the two-point boundary value problems for linear impulsive systems with singularities [J].
Ashordia, Malkhaz .
GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (01) :19-40
[9]  
Bainov D. D., 1989, E HORWOOD SERIES
[10]  
Benchohra M., 2006, CONT MATH APPL, V2