The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator

被引:66
|
作者
Srivastava, Hari Mohan [1 ,2 ]
Khan, Shahid [3 ]
Ahmad, Qazi Zahoor [4 ]
Khan, Nazar [4 ]
Hussain, Saqib [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Riphah Int Univ, Dept Math, Islamabad, Pakistan
[4] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad, Pakistan
[5] COMSATS Inst Informat Technol, Dept Math, Abbottabad, Pakistan
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2018年 / 63卷 / 04期
关键词
Analytic functions; univalent functions; Taylor-Maclaurin series representation; Faber polynomials; bi-inivalent functions; q-derivative operator; q-hypergeometric functions; q-integral operators;
D O I
10.24193/subbmath.2018.4.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In our present investigation, we first introduce several new subclasses of analytic and bi-univalent functions by using a certain q-integral operator in the open unit disk U = {z : z is an element of C and vertical bar z vertical bar < 1}. By applying the Faber polynomial expansion method as well as the q-analysis, we then determine bounds for the nth coefficient in the Taylor-Maclaurin series expansion for functions in each of these newly-defined analytic and bi-univalent function classes subject to a gap series condition. We also highlight some known consequences of our main results.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 32 条
  • [1] Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions
    Khan, Bilal
    Srivastava, H. M.
    Tahir, Muhammad
    Darus, Maslina
    Ahmad, Qazi Zahoor
    Khan, Nazar
    AIMS MATHEMATICS, 2021, 6 (01): : 1024 - 1039
  • [2] Certain new applications of Faber polynomial expansion for some new subclasses of v-fold symmetric bi-univalent functions associated with q-calculus
    Khan, Mohammad Faisal
    AIMS MATHEMATICS, 2023, 8 (05): : 10283 - 10302
  • [3] Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions
    Jia, Zeya
    Khan, Nazar
    Khan, Shahid
    Khan, Bilal
    AIMS MATHEMATICS, 2022, 7 (02): : 2512 - 2528
  • [4] Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial
    El-Deeb, Sheza M.
    Murugusundaramoorthy, Gangadharan
    Vijaya, Kaliyappan
    Alburaikan, Alhanouf
    AIMS MATHEMATICS, 2021, 7 (02): : 2989 - 3005
  • [5] Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p, q) -derivative operator
    Altinkaya, Sahsene
    Yalcin, Sibel
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3067 - 3074
  • [6] Certain New Applications of Faber Polynomial Expansion for a New Class of bi-Univalent Functions Associated with Symmetric q-Calculus
    Swarup, Chetan
    SYMMETRY-BASEL, 2023, 15 (07):
  • [7] Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator
    Srivastava, Hari M.
    Motamednezhad, Ahmad
    Adegani, Ebrahim Analouei
    MATHEMATICS, 2020, 8 (02)
  • [8] Coefficient estimates for some general subclasses of analytic and bi-univalent functions
    Srivastava H.M.
    Gaboury S.
    Ghanim F.
    Afrika Matematika, 2017, 28 (5-6) : 693 - 706
  • [9] Certain Subclasses of Bi-Univalent Functions Defined by (p, q)-Differential Operator
    Rmsen, A. A. A.
    Shivarudrappa, H. L.
    Ravikumar, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (04): : 745 - 753
  • [10] FABER POLYNOMIAL COEFFICIENT ESTIMATES OF BI-UNIVALENT FUNCTIONS CONNECTED WITH THE q-CONVOLUTION
    El-Deeb, Sheza M.
    Bulut, Serap
    MATHEMATICA BOHEMICA, 2022, : 49 - 64