AN ALTERNATE CAYLEY-DICKSON PRODUCT

被引:1
作者
Bales, John W. [1 ]
机构
[1] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
关键词
Cayley-Dickson; doubling product; twisted group product; fractal; twist tree;
D O I
10.35834/mjms/1474295358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Although the Cayley-Dickson algebras are twisted group algebras, little attention has been paid to the nature of the Cayley-Dickson twist. One reason is that the twist appears to be highly chaotic and there are other interesting things about the algebras to focus attention upon. However, if one uses a doubling product for the algebras different from yet equivalent to the ones commonly used, and if one uses a numbering of the basis vectors different from the standard basis a quite beautiful and highly periodic twist emerges. This leads easily to a simple closed form equation for the product of any two basis vectors of a Cayley-Dickson algebra.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 12 条
[2]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[3]  
Bales J., 2015, ADV APPL CLIFFORD AL, V25, P1
[4]   A TREE FOR COMPUTING THE CAYLEY-DICKSON TWIST [J].
Bales, John W. .
MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2009, 21 (02) :83-93
[5]   Eigentheory of Cayley-Dickson algebras [J].
Biss, Daniel K. ;
Christensen, J. Daniel ;
Dugger, Daniel ;
Isaksen, Daniel C. .
FORUM MATHEMATICUM, 2009, 21 (05) :833-851
[6]   ON GENERALIZED CAYLEY-DICKSON ALGEBRAS [J].
BROWN, RB .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 20 (03) :415-&
[7]   REPRESENTATIONS OF TWISTED GROUP ALGEBRAS [J].
BUSBY, RC ;
SMITH, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (02) :503-+
[8]  
Dickson LE, 1918, ANN MATH, V20, P155
[9]   TWISTED GROUP ALGEBRAS .1. [J].
EDWARDS, CM ;
LEWIS, JT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 13 (02) :119-&
[10]   Holomorphic Functions in Generalized Cayley-Dickson Algebras [J].
Flaut, Cristina ;
Shpakivskyi, Vitalii .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (01) :95-112