ASYMPTOTIC INFERENCE FOR DYNAMICAL-SYSTEMS OBSERVED WITH ERROR

被引:4
作者
MACEACHERN, SN [1 ]
BERLINER, LM [1 ]
机构
[1] OHIO STATE UNIV,DEPT STAT,COLUMBUS,OH 43210
基金
美国国家科学基金会;
关键词
ASYMPTOTICS; CHAOS; DYNAMICAL SYSTEMS; EXPONENTIAL FAMILIES; LIKELIHOOD RATIO TESTS;
D O I
10.1016/0378-3758(94)00117-E
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, the effects of measuring a dynamical system with error are investigated. In particular, we assume that the measurement errors follow a distribution in the exponential family, and that the value of the underlying dynamical system determines the parameter of the measurement distribution. The key questions are whether two distinct initial conditions can be asymptotically distinguished and whether two distinct parameter values can be asymptotically distinguished. Results of the statistical theory are applied in the context of dynamical systems.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 50 条
  • [41] Order and Chaos in Dynamical Systems
    Contopoulos, George
    MILAN JOURNAL OF MATHEMATICS, 2009, 77 (01) : 101 - 126
  • [42] Order and Chaos in Dynamical Systems
    George Contopoulos
    Milan Journal of Mathematics, 2009, 77 : 101 - 126
  • [43] Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations
    Song, Christian Y.
    Hsieh, Han-Lin
    Pesaran, Bijan
    Shanechi, Maryam M.
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [44] "Parallel-Tempering"-Assisted Hybrid Monte Carlo Algorithm for Bayesian Inference in Dynamical Systems
    Sun, Shengjie
    Shen, Yuan
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 357 - 368
  • [45] Error Analysis of Physics-Informed Neural Networks (PINNs) in Typical Dynamical Systems
    Ying, Sia Jye
    Kheng, Goh Yong
    Hui, Liew How
    Fah, Chang Yun
    JURNAL FIZIK MALAYSIA, 2023, 44 (01): : 10044 - 10051
  • [46] Higher order asymptotic homogenization for dynamical problems
    Andrianov, Igor I.
    Andrianov, Igor, V
    Starushenko, Galina A.
    Borodin, Evgenij, I
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (09) : 1672 - 1687
  • [47] Induced hyperspace dynamical systems of symbolic dynamical systems
    Li, Zhiming
    Wang, Minghan
    Wei, Guo
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (08) : 809 - 820
  • [48] A VIEW OF NEURAL NETWORKS AS DYNAMICAL SYSTEMS
    Cessac, B.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (06): : 1585 - 1629
  • [49] MINIMAL DYNAMICAL SYSTEMS WITH CLOSED RELATIONS
    Banic, Iztok
    Erceg, Goran
    Rogina, Rene gril
    Kennedy, Judy
    GLASNIK MATEMATICKI, 2024, 59 (02) : 479 - 505
  • [50] Sensitivity of fuzzy nonautonomous dynamical systems
    Lan, Yaoyao
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1689 - 1700