CONTINUOUS HAHN POLYNOMIALS OF DIFFERENTIAL OPERATOR ARGUMENT AND ANALYSIS ON RIEMANNIAN SYMMETRICAL SPACES OF CONSTANT CURVATURE

被引:6
作者
BADERTSCHER, E
KOORNWINDER, TH
机构
[1] MATH INST,CH-3012 BERN,SWITZERLAND
[2] CWI,1009 AB AMSTERDAM,NETHERLANDS
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1992年 / 44卷 / 04期
关键词
SPACES OF CONSTANT CURVATURE; SPHERICAL FUNCTIONS; ASSOCIATED SPHERICAL FUNCTIONS; BESSEL FUNCTIONS; JACOBI FUNCTIONS; GEGENBAUER POLYNOMIALS; HAHN POLYNOMIALS; CONTINUOUS SYMMETRICAL HAHN POLYNOMIALS;
D O I
10.4153/CJM-1992-044-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the three types of simply connected Riemannian spaces of constant curvature it is shown that the associated spherical functions can be obtained from the corresponding (zonal) spherical functions by application of a differential operator of the form p(id/dt), where p belongs to a system of orthogonal polynomials: Gegenbauer polynomials, Hahn polynomials or continuous symmetric Hahn polynomials. We give a group theoretic explanation of this phenomenon and relate the properties of the polynomials p to the properties of the corresponding representation. The method is extended to the case of intertwining functions.
引用
收藏
页码:750 / 773
页数:24
相关论文
共 25 条
[1]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[2]   A SET OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (04) :651-655
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Dixmier J., 1978, B SCI MATH, V102, P307
[5]   On the theory of spheric waves [J].
Erdelyi, A .
PHYSICA, 1937, 4 :0107-0120
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[7]  
FARAUT J, 1979, J MATH PURE APPL, V58, P369
[8]  
FARAUT J, 1987, DEUX COURSES ANAL HA, P1
[9]  
Faraut J, 1982, ANAL HARMON, P315
[10]  
FLENSTEDJENSEN M, 1986, CBMS REGIONAL C SERI, V61