TRANSITION AMPLITUDES WITHIN THE STOCHASTIC QUANTIZATION SCHEME

被引:4
作者
HUFFEL, H [1 ]
NAKAZATO, H [1 ]
机构
[1] UNIV RYUKYUS,DEPT PHYS,OKINAWA 90301,JAPAN
关键词
D O I
10.1142/S0217732394002793
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantum mechanical transition amplitudes are calculated within the stochastic quantization scheme for the free nonrelativistic particle, the Harmonic oscillator and the nonrelativistic particle in a constant magnetic field; we conclude with free Grassmann quantum mechanics.
引用
收藏
页码:2953 / 2966
页数:14
相关论文
共 18 条
[1]   PARTICLE SPIN DYNAMICS AS GRASSMANN VARIANT OF CLASSICAL MECHANICS [J].
BEREZIN, FA ;
MARINOV, MS .
ANNALS OF PHYSICS, 1977, 104 (02) :336-362
[2]   CLASSICAL MECHANICS FOR BOSE-FERMI SYSTEMS [J].
CASALBUONI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 33 (03) :389-431
[3]  
CASALBUONI R, 1980, PHYS LETT B, V93, P308
[4]   STOCHASTIC QUANTIZATION [J].
DAMGAARD, PH ;
HUFFEL, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 152 (5-6) :227-+
[5]   STOCHASTIC QUANTIZATION WITH FERMIONS [J].
DAMGAARD, PH ;
TSOKOS, K .
NUCLEAR PHYSICS B, 1984, 235 (01) :75-92
[6]  
Feynman R. P., 1964, QUANTUM MECH PATH IN
[7]   GRASSMANN OSCILLATOR [J].
FINKELSTEIN, R ;
VILLASANTE, M .
PHYSICAL REVIEW D, 1986, 33 (06) :1666-1673
[8]   LANGEVIN SIMULATION IN MINKOWSKI SPACE [J].
GOZZI, E .
PHYSICS LETTERS B, 1985, 150 (1-3) :119-124
[9]   STOCHASTIC QUANTIZATION FOR QUANTUM-MECHANICS AND CONDITIONAL PROBABILITIES [J].
HOUARD, JC ;
IRACASTAUD, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) :1348-1357
[10]   STOCHASTIC QUANTIZATION IN MINKOWSKI SPACE [J].
HUFFEL, H ;
RUMPF, H .
PHYSICS LETTERS B, 1984, 148 (1-3) :104-110