(N, +, V2, V3) IS UNDECIDABLE

被引:0
作者
VILLEMAIRE, R
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1992年 / 314卷 / 10期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V2 and V3 be the functions of N to N which sends x to the greatest power of 2 which divides x and to the greatest power of 3 which divides x, respectively. It is shown that the theory of < N, + V2, V3 > is undecidable. By Buchi's Theorem [21, this means that there is no machine which recognizes exactly the sets of integers built up from the 2-recognizable sets and from the 3-recognizable sets by the operations of intersection, complementation and projection.
引用
收藏
页码:775 / 777
页数:3
相关论文
共 6 条
  • [1] BRUYERE V, 1984, ENTIERS AUTOMATES FI
  • [2] Cobham A, 1969, MATH SYST THEORY, V3, P186
  • [3] Eilenberg S, 1974, AUTOMATA LANGUAGES M
  • [4] J. R. Buchi, 1960, Z MATH LOG GRUNDL MA, V6, P66
  • [5] MICHAUX C, 1986, CR ACAD SCI I-MATH, V303, P939
  • [6] QUINE WV, 1946, J SYMBOLIC LOGIC, V11