SYMPLECTIC TOPOLOGY, HOLOMORPHIC CONVEXITY AND CONTACT STRUCTURES

被引:0
作者
BENNEQUIN, D [1 ]
机构
[1] UNIV STRASBOURG,INST RECH MATH AVANCEE,CNRS,LAB 1,F-67084 STRASBOURG,FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:285 / 323
页数:39
相关论文
共 50 条
[21]   Tight contact structures with no symplectic fillings [J].
John B. Etnyre ;
Ko Honda .
Inventiones mathematicae, 2002, 148 :609-626
[22]   Symplectic or contact structures on Lie groups [J].
Khakimdjanov, Y ;
Goze, M ;
Medina, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (01) :41-54
[23]   Contact topology and holomorphic invariants via elementary combinatorics [J].
Mathews, Daniel V. .
EXPOSITIONES MATHEMATICAE, 2014, 32 (02) :121-160
[24]   Symplectic, contact and low-dimensional topology - Preface [J].
Matic, G ;
McCrory, C .
TOPOLOGY AND ITS APPLICATIONS, 1998, 88 (1-2) :1-1
[25]   HOLOMORPHIC VECTOR BUNDLES, EXACT COMPLEX SYMPLECTIC OR UNIMODULAR STRUCTURES [J].
IBRAHIM, J ;
LICHNEROWICZ, A .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (09) :713-717
[26]   The holomorphic symplectic structures on hyper-Kahler manifolds of type A∞ [J].
Hattori, Kota .
ADVANCES IN GEOMETRY, 2014, 14 (04) :613-630
[27]   Symplectic convexity for orbifolds [J].
Yang, Qi Lin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :555-564
[28]   Symplectic convexity for orbifolds [J].
Qi Lin Yang .
Acta Mathematica Sinica, English Series, 2008, 24 :555-564
[29]   INTERMEDIATE HOLOMORPHIC CONVEXITY [J].
BARLET, D ;
SILVA, A .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :649-665
[30]   Symplectic Convexity for Orbifolds [J].
Qi Lin YANG Mathematical DepartmentTsinghua UniversityBeijing PRChina .
ActaMathematicaSinica(EnglishSeries), 2008, 24 (04) :555-564