THE VOLTERRA MODEL AND ITS RELATION TO THE TODA LATTICE

被引:39
作者
DAMIANOU, PA
机构
[1] Department of Mathematics, The University of Arizona, Tuczon
关键词
D O I
10.1016/0375-9601(91)90578-V
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An integrable system associated with a lattice deformation of the Virasoro algebra is studied. It is shown that this system, known as the Volterra model, is dynamically and algebraically equivalent to the finite non-periodic Toda lattice.
引用
收藏
页码:126 / 132
页数:7
相关论文
共 14 条
[1]  
BABELON O, 1990, INTEGRABLE SYSTEMS A
[2]   MASTER SYMMETRIES AND R-MATRICES FOR THE TODA LATTICE [J].
DAMIANOU, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (02) :101-112
[3]  
DAMIANOU PA, 1989, THESIS U ARIZONA
[4]  
Fadeev L.D., 1986, HAMILTONIAN METHODS
[5]  
FADEEV LD, 1986, SPRINGER LECT NOTES, V246, P66
[6]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[7]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[8]   MASTERSYMMETRIES, HIGHER-ORDER TIME-DEPENDENT SYMMETRIES AND CONSERVED-DENSITIES OF NONLINEAR EVOLUTION-EQUATIONS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (06) :1508-1522
[9]  
HENON M, 1973, COMMUNICATION 0828
[10]   EXPLICITLY SOLUBLE SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS RELATED TO CERTAIN TODA LATTICES [J].
KAC, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :160-169