STABILITY AND BIFURCATION OF QUASIPARALLEL ALFVEN SOLITONS

被引:9
作者
HAMILTON, RL
KENNEL, CF
MJOLHUS, E
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
[2] UNIV TROMSO,INST MATH & PHYS SCI,N-9001 TROMSO,NORWAY
来源
PHYSICA SCRIPTA | 1992年 / 46卷 / 03期
关键词
D O I
10.1088/0031-8949/46/3/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The inverse scattering transformation (IST) is used to study the one-parameter and two-parameter soliton families of the derivative nonlinear Schrodinger (DNLS) equation. The two-parameter soliton family is determined by the discrete complex eigenvalue spectrum of the Kaup-Newell scattering problem and the one-parameter soliton family corresponds to the discrete real eigenvalue spectrum. We exploit the structure of the IST to discuss the existence of discrete real eigenvalues and to prove their structural stability to perturbations of the initial conditions. Also, though the two-parameter soliton is structurally stable in general, we show that a perturbation of the initial conditions may change the two-parameter soliton into a degenerate soliton which, in tum, is structurally unstable. This degenerate, or double pole, soliton may bifurcate due to a perturbation of the initial conditions into a pair of one-parameter solitons. If the initial profile is on compact support, then this pair of one-parameter solitons must be compressive and rarefactive respectively. Finally, we solve the Gelfand-Levitan equations appropriate for the double pole soliton.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 9 条
[1]   INVERSE PROBLEM IN QUANTUM THEORY OF SCATTERING [J].
FADDEYEV, LD ;
SECKLER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) :72-&
[2]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[3]   SOLITON SOLUTIONS OF THE DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAWATA, T ;
KOBAYASHI, N ;
INOUE, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 46 (03) :1008-1015
[4]   EXACT SOLUTIONS OF DERIVATIVE NON-LINEAR SCHRODINGER EQUATION UNDER NONVANISHING CONDITIONS [J].
KAWATA, T ;
INOUE, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (06) :1968-1976
[5]   NONLINEAR, DISPERSIVE, ELLIPTICALLY POLARIZED ALFVEN-WAVES [J].
KENNEL, CF ;
BUTI, B ;
HADA, T ;
PELLAT, R .
PHYSICS OF FLUIDS, 1988, 31 (07) :1949-1961
[6]   MODIFIED NONLINEAR SCHRODINGER EQUATION FOR ALFVEN WAVES PROPAGATING ALONG MAGNETIC-FIELD IN COLD-PLASMAS [J].
MIO, K ;
OGINO, T ;
MINAMI, K ;
TAKEDA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 41 (01) :265-271
[7]   NONLINEAR ALFVEN WAVES AND THE DNLS EQUATION - OBLIQUE ASPECTS [J].
MJOLHUS, E .
PHYSICA SCRIPTA, 1989, 40 (02) :227-237
[8]  
MjOlhus E, 1974, 48 U BERG DEP APPL M
[9]   PARALLEL PROPAGATION OF NONLINEAR LOW-FREQUENCY WAVES IN HIGH-BETA PLASMA [J].
ROGISTER, A .
PHYSICS OF FLUIDS, 1971, 14 (12) :2733-+