Algebraic proof of the complete reducibility of representations of Semisimple Lie Groups.

被引:20
作者
Casimir, H
van der Waerden, BL
机构
关键词
D O I
10.1007/BF01472196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
[41]   ON FINITE AND CONTINUOUS LITTLE GROUPS OF REPRESENTATIONS OF SEMISIMPLE LIE-GROUPS [J].
KING, RC ;
PATERA, J ;
SHARP, RT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (04) :1143-1158
[42]   Complete reducibility and Zariski density in linear Lie groups [J].
Moskowitz, M .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (02) :357-365
[43]   Complete reducibility and Zariski density in linear Lie groups [J].
Martin Moskowitz .
Mathematische Zeitschrift, 1999, 232 :357-365
[44]   COMMUTING VARIETIES OF SEMISIMPLE LIE-ALGEBRAS AND ALGEBRAIC GROUPS [J].
RICHARDSON, RW .
COMPOSITIO MATHEMATICA, 1979, 38 (03) :311-327
[45]   ALGEBRAIC STRUCTURE OF THE REPRESENTATION OF SEMISIMPLE LIE GROUPS .1. [J].
VOGAN, DA .
ANNALS OF MATHEMATICS, 1979, 109 (01) :1-60
[47]   Semisimple Lie groups satisfy property RD, a short proof [J].
Boyer, Adrien .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (9-10) :335-338
[48]   Projective representations of real semisimple Lie groups and the gradient map [J].
Biliotti, Leonardo .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2025, 67 (02)
[49]   DIFFERENTIABLE REPRESENTATIONS OF ALGEBRAIC LIE-GROUPS [J].
DUCLOUX, PF .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1991, 24 (03) :257-318
[50]   Primitive stable representations in higher rank semisimple Lie groups [J].
Kim, Inkang ;
Kim, Sungwoon .
REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (03) :715-745