Algebraic proof of the complete reducibility of representations of Semisimple Lie Groups.

被引:20
作者
Casimir, H
van der Waerden, BL
机构
关键词
D O I
10.1007/BF01472196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
[22]   REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .3. [J].
HARISHCHANDRA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 76 (MAR) :234-253
[23]   INDECOMPOSABLE REPRESENTATIONS OF SEMISIMPLE LIE-GROUPS [J].
SPEH, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 265 (01) :1-34
[24]   A Version of the Weyl Complete Reducibility Theorem for Not Necessarily Continuous Representations of Connected Lie Groups [J].
A. I. Shtern .
Russian Journal of Mathematical Physics, 2023, 30 :257-258
[25]   A Version of the Weyl Complete Reducibility Theorem for Not Necessarily Continuous Representations of Connected Lie Groups [J].
Shtern, A. I. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2019, 26 (01) :75-76
[26]   A Version of the Weyl Complete Reducibility Theorem for Not Necessarily Continuous Representations of Connected Lie Groups [J].
Shtern, A. I. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (02) :257-258
[27]   A Version of the Weyl Complete Reducibility Theorem for Not Necessarily Continuous Representations of Connected Lie Groups [J].
A. I. Shtern .
Russian Journal of Mathematical Physics, 2019, 26 :75-76
[28]   An algebraic proof of a property of Lie groups [J].
Chevalley, C .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :785-793
[29]   Intertwining operators into cohomology representations for semisimple Lie groups [J].
Donley, RW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (01) :138-165
[30]   COHOMOLOGY AND REDUCIBILITY OF REPRESENTATIONS OF SEMISIMPLE GAMMA-GRADED LIE-ALGEBRAS [J].
MITRA, B ;
TRIPATHY, KC .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (04) :333-352