An algorithm for variational inequalities with equilibrium and fixed point constraints

被引:0
作者
Bui Van Dinh [1 ]
机构
[1] Le Quy Don Tech Univ, Fac Informat Technol, Dept Math, 236 Hoang Quoc Viet Rd, Hanoi, Vietnam
关键词
variational inequalities; equilibrium problems; KyFan inequality; auxiliary subproblem principle; demicontractive mapping; projection method; Armijo linesearch; pseudomonotonicity;
D O I
10.1080/23311835.2015.1088176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new hybrid extragradient- viscosity algorithm for solving variational inequality problems, where the constraint set is the common elements of the set of solutions of a pseudomonotone equilibrium problem and the set of fixed points of a demicontractive mapping. Using the hybrid extragradient-viscosity method and combining with hybrid plane cutting techniques, we obtain the algorithm for this problem. Under certain conditions on parameters, the convergence of the iteration sequences generated by the algorithms is obtained.
引用
收藏
页数:15
相关论文
共 16 条
[1]   An extragradient algorithm for solving bilevel pseudomonotone variational inequalities [J].
Anh, P. N. ;
Kim, J. K. ;
Muu, L. D. .
JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) :627-639
[2]  
Blum E., 1994, MATH STUD, V63, P127
[3]   A projection algorithm for solving pseudomonotone equilibrium problems and it's application to a class of bilevel equilibria [J].
Bui Van Dinh ;
Le Dung Muu .
OPTIMIZATION, 2015, 64 (03) :559-575
[4]   AN ITERATIVE ROW-ACTION METHOD FOR INTERVAL CONVEX-PROGRAMMING [J].
CENSOR, Y ;
LENT, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 34 (03) :321-353
[5]   Auxiliary Principle and Algorithm for Mixed Equilibrium Problems and Bilevel Mixed Equilibrium Problems in Banach Spaces [J].
Ding, X. P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) :347-357
[6]  
Facchinei F., 2003, FINITE DIMENSIONAL V
[7]  
Konnov, 2001, LECT NOTES EC MATH S
[8]  
Luo J. Q., 1996, MATH PROGRAMS EQUILI
[9]   A hybrid extragradient-viscosity method for monotone operators and fixed point problems [J].
Mainge, Paul-Emile .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) :1499-1515
[10]   Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization [J].
Mainge, Paul-Emile .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :899-912