ESTIMATES OF TRANSITION DENSITIES FOR BROWNIAN-MOTION ON NESTED FRACTALS

被引:100
作者
KUMAGAI, T
机构
[1] Department of Mathematics, Osaka University, Osaka, 560, Toyonaka
关键词
D O I
10.1007/BF01192133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain upper and lower bounds for the transition densities of Brownian motion on nested fractals. Compared with the estimate on the Sierpinski gasket, the results require the introduction of a new exponent, d(J), related to the ''shortest path metric'' and ''chemical exponent'' on nested fractals. Further, Holder order of the resolvent densities, sample paths and local times are obtained. The results are obtained using the theory of multi-type branching processes.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 15 条
[1]  
Athreya K., 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[2]  
Bandt C., 1990, SELF SIMILAR SETS 6
[3]  
BARLOW M. T., 1993, ASYMPTOTIC PROBLEMS, P131
[4]   TRANSITION DENSITIES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :307-330
[5]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[6]   PERCOLATION DIMENSION OF FRACTALS [J].
BURDZY, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (01) :282-288
[7]  
FITZSIMMONS PJ, 1993, TRANSITION DENSITY E
[8]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[9]  
HUTCHINSON JE, 1981, INDIANA U MATH J, V30
[10]  
KUMAGAI T., 1993, ASYMPTOTIC PROBLEMS, P219