ON PERMUTATION-GROUPS WITH BOUNDED MOVEMENT

被引:25
作者
PRAEGER, CE
机构
[1] Department of Mathematics, University of Western Australia, Nedlands
关键词
D O I
10.1016/0021-8693(91)90114-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If no element of G moves any subset of Ω by more than m points (that is if |Γ - Γg|≤ m for every Γ ⊆ Ω and g ε{lunate} G), then Ω is finite, and moreover |Ω| $ ̌5m - 2. If moreover G is transitive on Ω then |Ω| $ ̌3m and equality can be achieved if m = 2 or m is a power of 3. © 1991.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 5 条
[1]  
[Anonymous], J LONDON MATH SOC
[2]  
Birch B.J., 1976, B AUSTRAL MATH SOC, V14, P7
[3]  
FEIN B, 1981, J REINE ANGEW MATH, V328, P39
[4]   STRUCTURE OF FINITARY PERMUTATION GROUPS [J].
NEUMANN, PM .
ARCHIV DER MATHEMATIK, 1976, 27 (01) :3-17
[5]  
ROTMAN JJ, 1965, THEORY GROUPS INTRO