CAUCHY-SCHWARZ INEQUALITIES ASSOCIATED WITH POSITIVE SEMIDEFINITE MATRICES

被引:60
作者
HORN, RA [1 ]
MATHIAS, R [1 ]
机构
[1] JOHNS HOPKINS UNIV,DEPT MATH SCI,BALTIMORE,MD 21218
关键词
D O I
10.1016/0024-3795(90)90256-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a quasilinear representation for unitarily invariant norms, we prove a basic inequality: Let A= L X X* M be positive semidefinite, where X∈Mm,n. Then |||X|p||2≤{norm of matrix}Lp{norm of matrix} {norm of matrix}Mp{norm of matrix} for all p>0 and all unitarily invariant norms {norm of matrix}·{norm of matrix}. We show how several inequalities of Cauchy-schwarz type follow from this bound and obtain a partial analog of our results for lp norms. © 1990.
引用
收藏
页码:63 / 82
页数:20
相关论文
共 22 条
[1]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[2]  
Ando T., 1987, LINEAR MULTILINEAR A, V21, P345, DOI DOI 10.1080/03081088708817810.107
[3]  
BHATIA R, 1988, J OPERAT THEOR, V19, P129
[4]  
BHATIA R, IN PRESS SIAM J MATR
[5]   TRANSFORMATIONS ON PARTITIONED MATRICES [J].
DEPILLIS, J .
DUKE MATHEMATICAL JOURNAL, 1969, 36 (03) :511-&
[6]   FRACTIONAL HADAMARD POWERS OF POSITIVE DEFINITE MATRICES [J].
FITZGERALD, CH ;
HORN, RA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (03) :633-642
[8]  
HORN R, IN PRESS SIAM J MATR
[9]  
Horn R.A, 2012, MATRIX ANAL, V2nd ed.
[10]  
HORN RA, IN PRESS LINEAR MULT