INFINITELY MANY LARGE-AMPLITUDE HOMOCLINIC ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS

被引:18
作者
BUFFONI, B
机构
[1] School of Mathematics, University of Bath
关键词
D O I
10.1006/jdeq.1995.1123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of fourth order autonomous Hamiltonian systems, we give geometrical conditions that imply the existence of infinitely many homoclinic orbits to a saddle-focus equilibrium. Our results are global in the sense that they do not rely on any transversality assumption. They are applied to two example systems; one arises in elasticity and in water-wave theory, the other describes the motion of a particle in a certain rotating potential. (C) Academic Press, Inc.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 12 条
[1]  
Amick C.J., 1991, EUR J APPL MATH, V3, P97
[2]   POINTS OF EGRESS IN PROBLEMS OF HAMILTONIAN-DYNAMICS [J].
AMICK, CJ ;
TOLAND, JF .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :405-417
[3]  
AMICK CJ, 1989, ARCH RATIONAL MECH A, V105
[4]   GLOBAL EXISTENCE OF HOMOCLINIC AND PERIODIC-ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
BUFFONI, B ;
TOLAND, JF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :104-120
[5]  
BUFFONI B, 1994, BIFURCATION COALESCE
[6]   BIFURCATION OF A PLETHORA OF MULTIMODAL HOMOCLINIC ORBITS FOR AUTONOMOUS HAMILTONIAN-SYSTEMS [J].
CHAMPNEYS, AR ;
TOLAND, JF .
NONLINEARITY, 1993, 6 (05) :665-721
[7]  
CHAMPNEYS AR, SUBSIDIARY HOMOCLINI
[8]  
Coddington A., 1955, THEORY ORDINARY DIFF
[9]   HOMOCLINIC ORBITS IN HAMILTONIAN SYSTEMS [J].
DEVANEY, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 21 (02) :431-438
[10]   HOMOCLINIC, HETEROCLINIC, AND PERIODIC-ORBITS FOR A CLASS OF INDEFINITE HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
TOLAND, J .
MATHEMATISCHE ANNALEN, 1984, 268 (03) :387-403