SEVERAL CONJECTURES AND RESULTS IN THE THEORY OF INTEGRABLE HAMILTONIAN-SYSTEMS OF HYDRODYNAMIC TYPE, WHICH DO NOT POSSESS RIEMANN INVARIANTS

被引:19
作者
FERAPONTOV, EV
机构
关键词
D O I
10.1007/BF01016140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate several conjectures concerning the structure and general properties of the n x n integrable nondiagonalizable hamiltonian systems of hydrodynamic type. For n = 3 our results are, in fact, complete: a 3 x 3 nondiagonalizable hamiltonian system is integrable if and only if it is weakly nonlinear (linearly degenerate).
引用
收藏
页码:567 / 570
页数:4
相关论文
共 12 条
[1]  
DUBROVIN BA, 1989, USP MAT NAUK, V44, P29, DOI DOI 10.1070/RM1989V044N06ABEH002300
[2]   ON INTEGRABILITY OF 3X3 SEMI-HAMILTONIAN HYDRODYNAMIC TYPE SYSTEMS UT(I) = VJ(I)(U) UX(J) WHICH DO NOT POSSESS RIEMANN INVARIANTS [J].
FERAPONTOV, EV .
PHYSICA D, 1993, 63 (1-2) :50-70
[3]   INTEGRATION OF WEAKLY NONLINEAR HYDRODYNAMIC SYSTEMS IN RIEMANN INVARIANTS [J].
FERAPONTOV, EV .
PHYSICS LETTERS A, 1991, 158 (3-4) :112-118
[4]  
FERAPONTOV EV, 1993, PHYS LETT A, V179
[5]  
FERAPONTOV EV, IN PRESS DIFF GEOM A
[6]  
FERAPONTOV EV, 1991, MAT MODELIROVANIE, V3, P82
[7]  
FERAPONTOV EV, 1991, PHYS LETT A, V158, P391
[8]  
Haantjes J., 1955, INDAG MATH, V17, P158, DOI 10.1016/S1385-7258(55)50021-7
[9]  
Nijenhuis A., 1951, INDAG MATH, V13, P200
[10]  
Tsarev S. P., 1991, MATH USSR IZV, V37, P397, DOI 10.1070/IM1991v037n02ABEH002069