Iron Recovery from Iron Ore Tailings by Direct Hydrogen Reduction at Low Temperature and Magnetic Separation

被引:0
作者
Pinto, Paula S. [1 ,2 ]
Milagre, Luisa E. [1 ]
Moreira, Larissa C. M. [1 ]
Rocha Junior, Hamilton P. [1 ]
Salviano, Adriana B. [1 ]
Ardisson, Jose D. [3 ]
V. Parreira, Fabricio [4 ]
Teixeira, Ana Paula C. [1 ]
Lago, Rochel M. [1 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Estado Minas Gerais UEMG, Grp Mat & Tecnol Ambientais, Campus Divinopolis, BR-35501170 Divinopolis, MG, Brazil
[3] CNEN, CDTN, Ctr Desenvolvimento Tecnol Nucl, Lab Fis Aplicada, BR-31270901 Belo Horizonte, MG, Brazil
[4] Vale SA, Ctr Tecnol Ferrosos, BR-34000000 Nova Lima, MG, Brazil
关键词
hydrogen; iron ore tailing; iron; magnetic separation; recovery; reduction;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we describe a sustainable alternative to recover iron from two iron ore tailings (IOT) using hydrogen reduction at relatively low temperatures followed by magnetic separation. X-ray powder diffraction (XRD), inductively coupled plasma (ICP), atomic absorption (AA), M??ssbauer, scanning electron microscopy (SEM/EDS), Raman and thermogravimetry (TG) analyses indicated that the Fe oxide present in the IOTs (sandy tailing (ST) and mud tailings (MT)), can be reduced with H2 at 500 ??C to produce ??-Fe. Upon magnetic separation the mud tailing produced a 77 wt.% magnetic fraction increasing the Fe content from 19.2 to ca. 56 wt.% of Fe. On the other hand, the sandy tailing resulted in a 15 wt.% magnetic fraction increasing the Fe content from 19.2 to 70 wt.%. These results indicate that up to 86% of iron can be recovered from the IOT wastes already in the metallic form which can be very interesting for the steel industry.
引用
收藏
页码:969 / 977
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 2011, IMAGEJ US NATL I HLT
[2]   Novel method for iron recovery from hazardous iron ore tailing with induced carbothermic reduction-magnetic flocculation separation [J].
Bai, Shao-Jun ;
Li, Chun-Long ;
Fu, Xiang-Yu ;
Lv, Chao ;
Wen, Shu-Ming .
CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2018, 20 (04) :825-837
[3]   Iron Ore Tailings: Characterization and Applications [J].
Carmignano, Ottavio R. ;
Vieira, Sara S. ;
Teixeira, Ana Paula C. ;
Lameiras, Fernando S. ;
Brandao, Paulo Roberto G. ;
Lago, Rochel M. .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2021, 32 (10) :1895-1911
[4]  
Cornell R. M., 2003, IRON OXIDES, P139, DOI DOI 10.1002/3527602097
[5]  
Cornell RM, 2003, IRON OXIDES
[6]   Modelling a new, low CO2 emissions, hydrogen steelmaking process [J].
da Costa, A. Ranzani ;
Wagner, D. ;
Patisson, F. .
JOURNAL OF CLEANER PRODUCTION, 2013, 46 :27-35
[7]  
da Cunha J. B. V., 2018, THESIS U FEDERAL MIN
[8]   Synthesis of magnetite nanoparticles from iron ore tailings using a novel reduction-precipitation method [J].
Darezereshki, Esmaeel ;
Darban, Ahmad Khodadadi ;
Abdollahy, Mahmoud ;
Jamshidi, Ahmad .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 :336-343
[9]   Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater [J].
Duan, Ping ;
Yan, Chunjie ;
Zhou, Wei ;
Ren, Daming .
CERAMICS INTERNATIONAL, 2016, 42 (12) :13507-13518
[10]   Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle [J].
Duan, Ping ;
Yan, Chunjie ;
Zhou, Wei ;
Ren, Daming .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 118 :76-88