2-PARAMETER FAMILY OF EXACT-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION DESCRIBING OPTICAL-SOLITON PROPAGATION
被引:54
作者:
MIHALACHE, D
论文数: 0引用数: 0
h-index: 0
机构:
INST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIAINST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIA
MIHALACHE, D
[1
]
LEDERER, F
论文数: 0引用数: 0
h-index: 0
机构:
INST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIAINST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIA
LEDERER, F
[1
]
BABOIU, DM
论文数: 0引用数: 0
h-index: 0
机构:
INST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIAINST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIA
BABOIU, DM
[1
]
机构:
[1] INST ATOM PHYS, DEPT THEORET PHYS, BUCHAREST, ROMANIA
来源:
PHYSICAL REVIEW A
|
1993年
/
47卷
/
04期
关键词:
D O I:
10.1103/PhysRevA.47.3285
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
By using a direct method for obtaining exact solutions of the nonlinear Schrodinger equation that describes the evolution of spatial or temporal optical solitons, a two-parameter family of solutions is given. These exact solutions describe the periodic wave patterns that are generated by the spatial or temporal modulational instability, the periodic evolution of the bright solitons superimposed onto a Continuous-wave background, and the breakup of a single pulse into two dark waves which move apart with equal and opposite transverse components of the velocities.
引用
收藏
页码:3285 / 3290
页数:6
相关论文
共 55 条
[1]
Ablowitz M J., 1981, SOLITONS INVERSE SCA
[2]
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]
Agrawal G. P., 2019, NONLINEAR FIBER OPTI, DOI 10.1016/C2018-0-01168-8