A SPECTRAL COMMUTANT LIFTING THEOREM

被引:39
作者
BERCOVICI, H
FOIAS, C
TANNENBAUM, A
机构
[1] UNIV MINNESOTA,DEPT ELECT ENGN,MINNEAPOLIS,MN 55455
[2] TECHNION ISRAEL INST TECHNOL,HAIFA,ISRAEL
关键词
COMMUTANT LIFTING THEOREM; DILATION THEORY; SPECTRAL RADIUS; INTERPOLATION THEORY;
D O I
10.2307/2001646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The commutant lifting theorem of [24] may be regarded as a very general interpolation theorem from which a number of classical interpolation results may be deduced. In this paper we prove a spectral version of the commutant lifting theorem in which one bonds the spectral radius of the interpolant and not the norm. We relate this to a spectral analogue of classical matricial Nevanlinna-Pick interpolation.
引用
收藏
页码:741 / 763
页数:23
相关论文
共 25 条
[1]  
Adamjan V. M., 1971, MATH USSR SB, V15, P31
[2]  
ADAMJAN VM, 1978, AM MATH SOC TRANSL, V111, P133
[3]  
AHLORS L, 1973, CONFORMAL INVARIANTS
[4]  
ARSENE G, 1979, LECT NOTES MATH, V747, P24
[5]  
BALL JA, 1983, J OPERAT THEOR, V9, P107
[6]  
Bercovici H., 1988, OPERATOR THEORY ADV, V29, P21
[7]  
BERCOVICI H, 1989, UNPUB 28TH CDC
[8]  
Bercovici H, 1988, MATH SURVEYS MONOGRA, V26
[9]  
DOYLE JC, 1984, ONR HONEYWELL WORKSH
[10]   A MAXIMUM-ENTROPY PRINCIPLE FOR CONTRACTIVE INTERPOLANTS [J].
DYM, H ;
GOHBERG, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (01) :83-125