INDEFINITE QUADRATIC PROGRAMMING PROBLEM

被引:16
作者
KOUGH, PF
机构
关键词
D O I
10.1287/opre.27.3.516
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The author has developed several algorithms that obtain the global optimum to the indefinite quadratic programming problem. A generalized Benders cut method is employed. These algorithms all possess epsilon -finite convergence. To obtain finite convergence, exact cuts were developed which are locally precise representations of a reduced objective. A finite algorithm is then constructed. Introductory computational results are presented.
引用
收藏
页码:516 / 533
页数:18
相关论文
共 50 条
[21]   Continuity of the optimal value function in indefinite quadratic programming [J].
Tam, NN .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 23 (01) :43-61
[22]   A Global Optimization Algorithm for Solving Indefinite Quadratic Programming [J].
Wang, Chunfeng ;
Deng, Yaping ;
Shen, Peiping .
ENGINEERING LETTERS, 2020, 28 (04) :1058-1062
[23]   An approximation algorithm for indefinite mixed integer quadratic programming [J].
Alberto Del Pia .
Mathematical Programming, 2023, 201 :263-293
[24]   INDEFINITE QUADRATIC PROGRAMMING WITH NON-LINEAR CONSTRAINTS [J].
SWARUP, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, 47 (06) :411-&
[25]   Continuity of the optimal value function in indefinite quadratic programming [J].
Nguyen Nang Tam .
Journal of Global Optimization, 2002, 23 :43-61
[26]   THE INDEFINITE ZERO-ONE QUADRATIC PROBLEM [J].
CARTER, MW .
DISCRETE APPLIED MATHEMATICS, 1984, 7 (01) :23-44
[27]   Convex relaxation and Lagrangian decomposition for indefinite integer quadratic programming [J].
Sun, X. L. ;
Li, J. L. ;
Luo, H. Z. .
OPTIMIZATION, 2010, 59 (05) :627-641
[28]   A weighting method for 0–1 indefinite quadratic bilevel programming [J].
S. R. Arora ;
Ritu Arora .
Operational Research, 2011, 11 :311-324
[29]   Extended quadratic programming problem [J].
Dikusar, VV .
DOKLADY AKADEMII NAUK, 1996, 349 (01) :29-31
[30]   On a solution method in indefinite quadratic programming under linear constraints [J].
Tran Hung Cuong ;
Lim, Yongdo ;
Nguyen Dong Yen .
OPTIMIZATION, 2024, 73 (04) :1087-1112