SEMIGROUPS OF MIDPOINT CONVEX SET-VALUED FUNCTIONS

被引:0
|
作者
SMAJDOR, A [1 ]
机构
[1] PEDAGOG UNIV,PL-30084 KRAKOW,POLAND
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1995年 / 46卷 / 1-2期
关键词
MIDPOINT CONVEX SET-VALUED FUNCTIONS; ITERATION SEMIGROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set-valued function F from a convex subset D of a real vector space X into the set n(Y) of all non-empty subsets of a real vector space Y is said to be midpoint convex iff 1/2[F(x)+F(x)]subset of F[1/2(x+y)] for all x, y is an element of D. This note deals with iteration semigroups of midpoint convex set-valued functions on a whole linear space.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [1] Semigroups of set-valued functions
    Olko, J
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (1-2): : 81 - 96
  • [2] APPROXIMATION OF CONVEX SET-VALUED FUNCTIONS
    VITALE, RA
    JOURNAL OF APPROXIMATION THEORY, 1979, 26 (04) : 301 - 316
  • [3] On collapsing iteration semigroups of set-valued functions
    Lydzinska, G
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 285 - 298
  • [4] Iteration regularized semigroups of set-valued functions
    Mosallanezhad, Masoud
    Janfada, Mohammad
    JOURNAL OF APPLIED ANALYSIS, 2016, 22 (02) : 121 - 130
  • [5] The Lipschitzianity of convex vector and set-valued functions
    Vu Anh Tuan
    Christiane Tammer
    Constantin Zălinescu
    TOP, 2016, 24 : 273 - 299
  • [6] The Lipschitzianity of convex vector and set-valued functions
    Vu Anh Tuan
    Tammer, Christiane
    Zlinescu, Constantin
    TOP, 2016, 24 (01) : 273 - 299
  • [7] On concave iteration semigroups of linear set-valued functions
    Andrzej Smajdor
    Aequationes mathematicae, 2008, 75 : 149 - 162
  • [8] On concave iteration semigroups of linear set-valued functions
    Smajdor, Andrzej
    AEQUATIONES MATHEMATICAE, 2008, 75 (1-2) : 149 - 162
  • [9] Increasing iteration semigroups of Jensen set-valued functions
    A. Smajdor
    aequationes mathematicae, 1998, 56 (1-2) : 131 - 142
  • [10] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Samuel Drapeau
    Andreas H. Hamel
    Michael Kupper
    Set-Valued and Variational Analysis, 2016, 24 : 253 - 275