ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS

被引:100
作者
ALAMA, S [1 ]
LI, YY [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1512/iumj.1992.41.41052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns multiplicity results for certain semilinear elliptic equations on R(N) with asymptotically periodic structure. In particular, we develop variational methods to construct ''multibump'' solutions, i.e., solutions with most of their mass lying in widely separated regions. We prove the following result: for each k greater-than-or-equal-to 2, our asymptotically periodic problem possesses infinitely many k-bump solutions, provided that the associated periodic problem has only finitely many Z(N)-distinct lowest-energy solutions.
引用
收藏
页码:983 / 1026
页数:44
相关论文
共 19 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]  
BESIERIS IM, 1980, NONLINEAR ELECTROMAG
[3]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[4]  
BUFFONI B, BIFURCATION SPECTRUM
[5]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[6]  
COTIZELATI V, 1992, J AM MATH SOC, V4, P693
[7]  
COTIZELATI V, 1991, IN PRESS COMM PURE A
[8]  
HEINZ HP, EXISTENCE GAP BIFURC
[9]  
HEINZ HP, 1992, NONLIN ANAL TMA, V19
[10]   COMPLETE CONSTANT MEAN-CURVATURE SURFACES IN EUCLIDEAN 3-SPACE [J].
KAPOULEAS, N .
ANNALS OF MATHEMATICS, 1990, 131 (02) :239-330