QUANTUM-MECHANICAL LIMIT IN OPTICAL-PRECISION MEASUREMENT AND COMMUNICATION

被引:73
作者
YAMAMOTO, Y
MACHIDA, S
SAITO, S
IMOTO, N
YANAGAWA, T
KITAGAWA, M
BJORK, G
机构
[1] Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180, Musashino-shi
关键词
D O I
10.1016/S0079-6638(08)70289-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This chapter discusses the standard and intrinsic quantum mechanical limits on optical precision measurement and communication. Nonclassical lights, such as a quadrature amplitude squeezed state, number-phase squeezed state (number state), and correlated photon pair circumvent the standard quantum limit (SQL) on photon generation. A quantum mechanical limit on the minimum energy cost per bit emerges if an optical homodyne or heterodyne receiver is used instead of a photon counter. The SQL on photon amplification stems from the fact that an ordinary linear amplifier amplifies the two conjugate observables simultaneously. The chapter discuses the intrinsic quantum limit, which determines the information extraction from a light wave. It emerges in the form of quantum mechanical channel capacity and Bohr's time-energy uncertainty principle. Applications of nonclassical lights, QND measurements, and single-observable amplifiers are also discussed. © 1990, Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 179
页数:93
相关论文
共 50 条
  • [21] STATISTICAL-INFERENCE AND QUANTUM-MECHANICAL MEASUREMENT
    BENOIST, RW
    MARCHAND, JP
    YOURGRAU, W
    FOUNDATIONS OF PHYSICS, 1977, 7 (11-1) : 827 - 833
  • [22] MEASUREMENT OF TIME CORRELATIONS IN QUANTUM-MECHANICAL SYSTEMS
    GOLDBERGER, ML
    SCIENCE, 1964, 144 (361) : 563 - &
  • [23] MEASUREMENT OF TIME CORRELATIONS FOR QUANTUM-MECHANICAL SYSTEMS
    GOLDBERGER, ML
    WATSON, KM
    PHYSICAL REVIEW B, 1964, 134 (4B): : B919 - &
  • [24] AN EXTENDED LATENCY INTERPRETATION OF QUANTUM-MECHANICAL MEASUREMENT
    MCKNIGHT, JL
    PHILOSOPHY OF SCIENCE, 1958, 25 (03) : 209 - 222
  • [25] Mechanism design principles for optical-precision, deployable instruments
    Lake, MS
    Hachkowski, MR
    COLLECTION OF THE 41ST AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE AND EXHIBIT, VOL 1 PTS 1-3, 2000, : 592 - 600
  • [26] Fundamental quantum limit in precision phase measurement
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 55 (04):
  • [27] Fundamental quantum limit in precision phase measurement
    Ou, ZY
    PHYSICAL REVIEW A, 1997, 55 (04): : 2598 - 2609
  • [28] PRECISION MEASUREMENT Sensing past the quantum limit
    Baker, Christopher G.
    Bowen, Warwick P.
    NATURE, 2017, 547 (7662) : 164 - 165
  • [29] A REGENERATIVE FIBER OPTICAL QUANTUM-MECHANICAL AMPLIFIER
    DZHIBLADZE, MI
    TEPLITSKII, ES
    ERIKASHVILI, RR
    KVANTOVAYA ELEKTRONIKA, 1984, 11 (01): : 132 - 137
  • [30] Universal invariants of quantum-mechanical and optical systems
    Dodonov, Victor V.
    Man'ko, Olga V.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17 (12): : 2403 - 2410