QUANTUM-MECHANICAL LIMIT IN OPTICAL-PRECISION MEASUREMENT AND COMMUNICATION

被引:73
|
作者
YAMAMOTO, Y
MACHIDA, S
SAITO, S
IMOTO, N
YANAGAWA, T
KITAGAWA, M
BJORK, G
机构
[1] Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180, Musashino-shi
关键词
D O I
10.1016/S0079-6638(08)70289-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This chapter discusses the standard and intrinsic quantum mechanical limits on optical precision measurement and communication. Nonclassical lights, such as a quadrature amplitude squeezed state, number-phase squeezed state (number state), and correlated photon pair circumvent the standard quantum limit (SQL) on photon generation. A quantum mechanical limit on the minimum energy cost per bit emerges if an optical homodyne or heterodyne receiver is used instead of a photon counter. The SQL on photon amplification stems from the fact that an ordinary linear amplifier amplifies the two conjugate observables simultaneously. The chapter discuses the intrinsic quantum limit, which determines the information extraction from a light wave. It emerges in the form of quantum mechanical channel capacity and Bohr's time-energy uncertainty principle. Applications of nonclassical lights, QND measurements, and single-observable amplifiers are also discussed. © 1990, Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 179
页数:93
相关论文
共 50 条
  • [11] ON THE THEORY OF MEASUREMENT IN QUANTUM-MECHANICAL SYSTEMS
    DURAND, L
    PHILOSOPHY OF SCIENCE, 1960, 27 (02) : 115 - 133
  • [12] Note on the quantum-mechanical theory of measurement
    Furry, WH
    PHYSICAL REVIEW, 1936, 49 (05): : 0393 - 0399
  • [13] Quantum-mechanical self-measurement
    Monton, B
    MODAL INTERPRETATION OF QUANTUM MECHANICS, 1998, 60 : 307 - 318
  • [14] Optical realization of quantum-mechanical invariants
    Moya-Cessa, H.
    Fernandez-Guasti, M.
    Arrizon, V. M.
    Chavez-Cerda, S.
    OPTICS LETTERS, 2009, 34 (09) : 1459 - 1461
  • [15] Quantum-mechanical description of optical beams
    Bialynicki-Birula, Iwo
    Bialynicka-Birula, Zofia
    JOURNAL OF OPTICS, 2017, 19 (12)
  • [16] OPTICAL-PRECISION PROFILOMETER USING THE DIFFERENTIAL METHOD
    ADACHI, M
    MIKI, H
    NAKAI, Y
    KAWAGUCHI, I
    OPTICS LETTERS, 1987, 12 (10) : 792 - 794
  • [17] CLASSICAL LIMIT FOR QUANTUM-MECHANICAL CORRELATION-FUNCTIONS
    HEPP, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) : 265 - 277
  • [18] QUANTUM-MECHANICAL FUNCTIONAL CENTRAL LIMIT-THEOREM
    COCKROFT, AM
    GUDDER, SP
    HUDSON, RL
    JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) : 125 - 148
  • [19] QUANTUM-MECHANICAL THEORY OF SCATTERING AND THE PROBLEM OF CLASSICAL LIMIT
    BASU, AN
    SENGUPTA, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1991, 106 (05): : 511 - 523
  • [20] LOSS OF QUANTUM-MECHANICAL COHERENCE IN A MEASUREMENT PROCESS
    NAKAZATO, H
    PASCAZIO, S
    PHYSICAL REVIEW A, 1992, 45 (07): : 4355 - 4366