TRANSIENT MAGNETOHYDRODYNAMIC (MHD) CASSON FLUID FLOW PAST AN OSCILLATING ROTATING VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM

被引:14
作者
Das, S. [1 ]
Banu, A. S. [1 ]
Sensharma, A. [2 ]
Jana, R. N. [3 ]
机构
[1] Univ Gour Banga, Dept Math, Malda 732103, India
[2] Univ Gour Banga, Dept Phys, Malda 732103, India
[3] Vidyasagar Univ, Dept Appl Math, Midnapore 721102, India
关键词
magnetohydrodynamic (MHD); Casson fluid; rotation; porous medium; cosine oscillations; sine oscillations;
D O I
10.1615/SpecialTopicsRevPorousMedia.v9.i3.30
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present report is a study of a transient magnetohydrodynamic (MHD) free convective flow of a viscous incompressible electrically conducting Casson fluid past a vertical oscillating plate in a rotating frame of reference embedded in a porous medium. The Casson fluid model is used to describe the non-Newtonian fluid behavior. The nondimensional governing equations are solved by using the Laplace transform technique for both cosine and sine oscillations of the plate. Effects of the embedded parameters on the velocity field, temperature distribution, shear stress, and rate of heat transfers at the plate are presented graphically. It is noted that the fluid velocity for cosine oscillations of the plate is much higher than that for sine oscillations of the plate.
引用
收藏
页码:239 / 260
页数:22
相关论文
共 31 条
[1]   Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface [J].
Abolbashari, Mohammad Hossein ;
Freidoonimehr, Navid ;
Nazari, Foad ;
Rashidi, Mohammad Mehdi .
ADVANCED POWDER TECHNOLOGY, 2015, 26 (02) :542-552
[2]  
Alfven H, 1950, COSMICAL ELECTRODYNA
[3]  
Animasaun IL., 2015, J NIGERIAN MATH SOC, V34, P11, DOI DOI 10.1016/J.JNNMS.2014.10.008
[4]  
Bhattacharyya K, 2013, Z ANGEW MATH MECH, V10, P1
[5]   Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer [J].
Bhattacharyya, Krishnendu ;
Hayat, Tasawar ;
Alsaedi, Ahmed .
CHINESE PHYSICS B, 2013, 22 (02)
[6]  
Bird R.B., 1983, REV CHEM ENG, V1, P1, DOI [10.1515/revce-1983-0102, DOI 10.1515/REVCE-1983-0102]
[7]   Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method [J].
Boyd, Joshua ;
Buick, James M. ;
Green, Simon .
PHYSICS OF FLUIDS, 2007, 19 (09)
[8]  
Casson N, 1959, RHEOLOGY DISPERSE SY
[9]  
Cramer K.C., 1973, ELECTR ENG JPN, DOI [DOI 10.1002/EEJ.4390930120, 10.1002/eej.4390930120]
[10]   Casson fluid flow in a pipe filled with a homogeneous porous medium [J].
Dash, RK ;
Mehta, KN ;
Jayaraman, G .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1996, 34 (10) :1145-1156