Fixed point iterations for Presic-Kannan nonexpansive mappings in product convex metric spaces

被引:8
作者
Fukhar-ud-din, Hafiz [1 ]
Berinde, Vasile [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[2] Tech Univ Cluj Napoca, North Univ Ctr Baia Mare, Dept Math & Comp Sci, Cluj Napoca, Romania
关键词
convex metric space; Presic Kannan nonexpansive mapping; fixed point; Mann iterative algorithm; convergence;
D O I
10.2478/ausm-2018-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Presic-Kannan nonexpansive mappings on the product spaces and show that they have a unique fixed point in uniformly convex metric spaces. Moreover, we approximate this fixed point by Mann iterations. Our results are new in the literature and are valid in Hilbert spaces, CAT(0) spaces and Banach spaces simultaneously.
引用
收藏
页码:56 / 69
页数:14
相关论文
共 25 条
[1]   A FIXED-POINT FREE NON-EXPANSIVE MAP [J].
ALSPACH, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) :423-424
[2]  
[Anonymous], REND 1 MATH U TRIEST
[3]  
Berinde V., 2009, REV ANAL NUMER THEOR, V38, P144
[4]   Coupled solutions for a bivariate weakly nonexpansive operator by iterations [J].
Berinde, Vasile ;
Khan, Abdul Rahim ;
Pacurar, Madalina .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[5]  
Bridson M., 1999, METRIC SPACES NONPOS
[6]   SPACES WITH NON-POSITIVE CURVATURE [J].
BUSEMANN, H .
ACTA MATHEMATICA, 1948, 80 (04) :259-310
[7]  
Ciric LB, 2007, ACTA MATH UNIV COMEN, V76, P143
[8]   Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces [J].
Fukhar-ud-din, H. ;
Khan, A. R. ;
Akhtar, Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :4747-4760
[9]  
Fukhar-ud-din H, 2016, CARPATHIAN J MATH, V32, P315
[10]  
KANNAN R, 1973, P AM MATH SOC, V38, P111