PERIODIC-SOLUTIONS OF DIFFERENTIAL-EQUATIONS IN BANACH-SPACES

被引:15
作者
DEIMLING, K
机构
[1] Fachbereich 17 der GH, Paderborn, D-4790
关键词
D O I
10.1007/BF01168561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space, D⊂X, f: [0,∞)xD→X continuous and ω-periodic. In this paper we consider various conditions on D and f sufficient for existence of an ω-periodic solution of the differential equation u′=f(t,u). In the main, we shall assume that D is closed bounded and convex and f satisfies a boundary condition at δD such that D is flow invariant for u′=f(t,u). The map f is assumed to be either compact or dissipative or a certain perturbation of such maps. © 1978 Springer-Verlag.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
[11]   SOLVABILITY OF DIFFERENTIAL-EQUATIONS IN SCALES OF BANACH-SPACES [J].
NAZAROV, VI .
SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (02) :307-319
[12]   DENSITY RESULT FOR DIFFERENTIAL-EQUATIONS IN BANACH-SPACES [J].
PIANIGIANI, G .
BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (9-10) :791-793
[13]   KNESER THEOREM FOR DIFFERENTIAL-EQUATIONS IN BANACH-SPACES [J].
PAPAGEORGIOU, NS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (03) :419-434
[14]   ON EXISTENCE THEOREMS FOR DIFFERENTIAL-EQUATIONS IN BANACH-SPACES [J].
BANAS, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 32 (01) :73-82
[15]   THE ESTIMATES OF PERIODIC-SOLUTIONS OF DIFFERENTIAL-EQUATIONS [J].
SAMOILENKO, AM ;
LAPTINSKY, VN .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1982, (01) :29-31
[16]   MULTIVALUED DIFFERENTIAL-EQUATIONS IN SEPARABLE BANACH-SPACES [J].
KISIELEWICZ, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 37 (02) :231-249
[17]   DIFFERENTIAL-EQUATIONS IN BANACH-SPACES - 5 EXAMPLES [J].
HORST, E .
ARCHIV DER MATHEMATIK, 1986, 46 (05) :440-444
[18]   STOCHASTIC DIFFERENTIAL-EQUATIONS IN BANACH-SPACES WITH BASIS [J].
PUGACHEV, VS .
DOKLADY AKADEMII NAUK, 1995, 342 (05) :592-595
[19]   DIFFERENTIAL-EQUATIONS WITH HERMITIAN COEFFICIENTS IN BANACH-SPACES [J].
POPESCU, N .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (02) :309-315
[20]   WEAK AND STRONG SOLUTIONS OF INVERSE PROBLEMS FOR DIFFERENTIAL-EQUATIONS IN BANACH-SPACES [J].
ORLOVSKII, DG .
DIFFERENTIAL EQUATIONS, 1991, 27 (05) :611-617