STRONG APPROXIMATION FOR SET-INDEXED PARTIAL SUM PROCESSES VIA KMT CONSTRUCTIONS .1.

被引:16
作者
RIO, E
机构
关键词
CENTRAL LIMIT THEOREM; SET-INDEXED PROCESS; PARTIAL SUM PROCESS; INVARIANCE PRINCIPLE; VAPNIK-CHERVONENKIS CLASS; METRIC ENTROPY; RANDOM MEASURE;
D O I
10.1214/aop/1176989266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X(i))i is-an-element-of Z+d be an array of independent identically distributed zero-mean random vectors with values in R(k). When E(\X1\r) < + infinity, for some r > 2, we obtain the strong approximation of the partial sum process (SIGMA(i is-an-element-of nuS)X(i): S is-an-element-of l) by a Gaussian partial sum process (SIGMA(i is-an-element-of nuS)Y(i): S is-an-element l), uniformly over all sets in a certain Vapnik-Cher-vonenkis class l of subsets of [0, 1]d. The most striking result is that both an array (X(i))i is-an-element-of Z+d of i.i.d. random vectors and an array (Y(i))i is-an-element-of Z+d of independent N(0, Var X1)-distributed random vectors may be constructed in such a way that, up to a power of log nu, sup(S is-an-element-of l)]\SIGMA\t is-an-element-of nuS(X(i) - Y(i))\ = O(nu(d-1)/2 OR nu(d/r)) a.s., for any Vapnik-Chervonenkis class l fulfilling the uniform Minkowsky condition. From a 1985 paper of Beck, it is straightforward to prove that such a result cannot be improved, when l is the class of Euclidean balls.
引用
收藏
页码:759 / 790
页数:32
相关论文
共 25 条
[1]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR SET-INDEXED PARTIAL-SUM PROCESSES WITH FINITE VARIANCE [J].
ALEXANDER, KS ;
PYKE, R .
ANNALS OF PROBABILITY, 1986, 14 (02) :582-597
[2]   CENTRAL LIMIT-THEOREMS FOR STOCHASTIC-PROCESSES UNDER RANDOM ENTROPY CONDITIONS [J].
ALEXANDER, KS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (03) :351-378
[3]   DENSITY AND DIMENSION [J].
ASSOUAD, P .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (03) :233-282
[4]   LAW OF THE ITERATED LOGARITHM FOR SET-INDEXED PARTIAL SUM PROCESSES WITH FINITE VARIANCE [J].
BASS, RF .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04) :591-608
[5]   FUNCTIONAL LAW OF THE ITERATED LOGARITHM AND UNIFORM CENTRAL LIMIT-THEOREM FOR PARTIAL-SUM PROCESSES INDEXED BY SETS [J].
BASS, RF ;
PYKE, R .
ANNALS OF PROBABILITY, 1984, 12 (01) :13-34
[6]   LOWER BOUNDS ON THE APPROXIMATION OF THE MULTIVARIATE EMPIRICAL PROCESS [J].
BECK, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :289-306
[7]   ON TAIL BEHAVIOR OF SUMS OF INDEPENDENT RANDOM VARIABLES [J].
BREIMAN, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 9 (01) :20-&
[8]  
Csorgo M., 1981, STRONG APPROXIMATION
[9]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[10]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552