Sufficient Optimality Conditions for Extremal Controls Based on Functional Increment Formulas

被引:3
作者
Srochko, V. A. [1 ]
Antonik, V. G. [1 ]
机构
[1] Irkutsk State Univ, Ul K Marksa 1, Irkutsk 664003, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control problem; the maximum principle; sufficient optimality conditions;
D O I
10.3103/S1066369X14080118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the optimal control problem without terminal constraints. With the help of nonstandard functional increment formulas we introduce definitions of strongly extremal controls. Such controls are optimal in linear and quadratic problems. In the general case, the optimality property is provided with an additional concavity condition of Pontryagin's function with respect to phase variables.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 11 条
[1]  
Antipina N. V., 2002, RUSS MATH, V46, P9
[2]  
CLARKE F. H., 1983, OPTIMIZATION NONSMOO
[3]  
Gabasov R., 2011, MAXIMUM PRINCIPLE TH
[4]  
Khailov E. N., 1998, WORKS STEKLOVS MIAN, V220, P217
[5]  
Krotov V. F., 1973, METHODS PROBLEMS OPT
[6]  
Mangasarian O.L., 1966, SIAM J CONTROL, V4, P139, DOI DOI 10.1137/0304013
[7]  
Nikol'skii M. S., 2006, Moscow University Computational Mathematics and Cybernetics, P29
[8]  
Pontryagin L.S., 1961, MATH THEORY OPTIMAL
[9]  
Srochko V.A., 2000, ITERATIVE METHODS SO
[10]  
Srochko V. A., 2005, VESTN BURYATSK U MAT, V2, P143