PROTEIN-SYNTHESIS IN LONG-TERM STATIONARY-PHASE CULTURES OF SACCHAROMYCES-CEREVISIAE

被引:136
作者
FUGE, EK [1 ]
BRAUN, EL [1 ]
WERNERWASHBURNE, M [1 ]
机构
[1] UNIV NEW MEXICO, DEPT BIOL, ALBUQUERQUE, NM 87131 USA
关键词
D O I
10.1128/JB.176.18.5802-5813.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We are interested in characterizing the process of entry into and the maintenance of the stationary phase. To identify proteins that are induced during growth to stationary phase, we examined protein synthesis in long-term stationary-phase cultures using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Although the total rate of protein synthesis declined when growth ceased after the postdiauxic phase, the pattern of proteins synthesized remained similar throughout the experimental period (28 days), except at the diauxic shift. At the diauxic shift most proteins detectable by 2D-PAGE undergo a transient reduction in their relative rate of synthesis that ends when cells resume growth during the postdiauxic phase. We conclude from this that the transient repression of protein synthesis at the diauxic shift is not directly associated with stationary-phase arrest. A number of proteins that are synthesized after exponential phase have been identified by 2D-PAGE. These proteins could be divided into three temporal classes depending upon when their synthesis became detectable. One postexponential protein, designated p35, was induced later than all other proteins, and its relative rate of synthesis increased throughout stationary phase. Unlike most postexponential proteins, p35 was not regulated by heat shock or glucose repression. We also observed that a direct correlation between steady-state mRNA accumulation and protein synthesis for another postexponential protein (Ssa3p) or two closely related constitutive proteins (Ssa1p and Ssa2p) did not exist. We conclude from this result that synthesis of proteins in stationary phase is regulated by mechanisms other than the control of steady-state mRNA accumulation.
引用
收藏
页码:5802 / 5813
页数:12
相关论文
共 54 条
[1]   A NOVEL DNA-BINDING PROTEIN WITH REGULATORY AND PROTECTIVE ROLES IN STARVED ESCHERICHIA-COLI [J].
ALMIRON, M ;
LINK, AJ ;
FURLONG, D ;
KOLTER, R .
GENES & DEVELOPMENT, 1992, 6 (12B) :2646-2654
[2]  
BASERGA R, 1985, BIOL CELL REPRODUCTI
[3]   TWO-DIMENSIONAL GEL ANALYSIS OF YEAST PROTEINS - APPLICATION TO THE STUDY OF CHANGES IN THE LEVELS OF MAJOR POLYPEPTIDES OF SACCHAROMYCES-CEREVISIAE DEPENDING ON THE FERMENTABLE OR NONFERMENTABLE NATURE OF THE CARBON SOURCE [J].
BATAILLE, N ;
THORAVAL, D ;
BOUCHERIE, H .
ELECTROPHORESIS, 1988, 9 (11) :774-780
[4]   INDUCTION OF A HEAT-SHOCK-TYPE RESPONSE IN SACCHAROMYCES-CEREVISIAE FOLLOWING GLUCOSE LIMITATION [J].
BATAILLE, N ;
REGNACQ, M ;
BOUCHERIE, H .
YEAST, 1991, 7 (04) :367-378
[5]   PROTEIN-SYNTHESIS DURING TRANSITION AND STATIONARY PHASES UNDER GLUCOSE LIMITATION IN SACCHAROMYCES-CEREVISIAE [J].
BOUCHERIE, H .
JOURNAL OF BACTERIOLOGY, 1985, 161 (01) :385-392
[6]  
BRAUN E, 1993, UNPUB
[7]   CARBON SOURCE REGULATION OF RAS1 EXPRESSION IN SACCHAROMYCES-CEREVISIAE AND THE PHENOTYPES OF RAS2- CELLS [J].
BREVIARIO, D ;
HINNEBUSCH, A ;
CANNON, J ;
TATCHELL, K ;
DHAR, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (12) :4152-4156
[8]   MULTIPLE REGULATORY MECHANISMS CONTROL THE EXPRESSION OF THE RAS1 AND RAS2 GENES OF SACCHAROMYCES-CEREVISIAE [J].
BREVIARIO, D ;
HINNEBUSCH, AG ;
DHAR, R .
EMBO JOURNAL, 1988, 7 (06) :1805-1813
[9]   RAS GENES IN SACCHAROMYCES-CEREVISIAE - SIGNAL TRANSDUCTION IN SEARCH OF A PATHWAY [J].
BROACH, JR .
TRENDS IN GENETICS, 1991, 7 (01) :28-33
[10]   IDENTIFICATION OF GLYCOLYTIC ENZYME POLYPEPTIDES ON THE TWO-DIMENSIONAL PROTEIN MAP OF SACCHAROMYCES-CEREVISIAE AND APPLICATION TO THE STUDY OF SOME WINE YEASTS [J].
BROUSSE, M ;
BATAILLE, N ;
BOUCHERIE, H .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (04) :951-957