ON THE STOKES-EINSTEIN MODEL OF SURFACE-DIFFUSION ALONG SOLID-SURFACES - SLIP BOUNDARY-CONDITIONS

被引:35
作者
DAVIS, AMJ
KEZIRIAN, MT
BRENNER, H
机构
[1] MIT,DEPT CHEM ENGN,CAMBRIDGE,MA 02139
[2] UNIV ALABAMA,DEPT MATH,TUSCALOOSA,AL 35487
关键词
D O I
10.1006/jcis.1994.1213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Slip boundary conditions-even if only infinitesimal in magnitude-are shown to remove the hydrodynamic no-slip contact singularity existing in the Stokes-Einstein model of the surface diffusion of a spherical Brownian solute molecule along a planar solid surface bounding a semi-infinite viscous solvent. In particular, it is shown that the existence of any degree of slip on both the sphere and the plane surfaces, however small, suffices to remove the contact singularity, thereby rendering the surface diffusivity nonzero. (C) 1994 Academic Press, Inc.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 38 条
[1]   THE STOKES RESISTANCE OF AN ARBITRARY PARTICLE .3. SHEAR FIELDS [J].
BRENNER, H .
CHEMICAL ENGINEERING SCIENCE, 1964, 19 (09) :631-651
[2]   MODEL OF SURFACE-DIFFUSION ON SOLIDS [J].
BRENNER, H ;
LEAL, LG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1977, 62 (02) :238-258
[3]  
Bungay PM, 1973, INT J MULTIPHAS FLOW, V1, P25, DOI DOI 10.1016/0301-9322(73)90003-7
[4]  
Carty JJ., 1957, THESIS MIT
[5]  
CHEN M, 1991, UNPUB
[6]  
Cox R. G., 1974, International Journal of Multiphase Flow, V1, P343, DOI 10.1016/0301-9322(74)90019-6
[7]  
Dean W., 1963, MATHEMATIKA, V10, P13, DOI DOI 10.1112/S0025579300003314
[8]  
DEBRUIJN NG, 1958, ASYMPTOTIC METHODS A, P60
[9]   ON IDENTIFYING THE APPROPRIATE BOUNDARY-CONDITIONS AT A MOVING CONTACT LINE - AN EXPERIMENTAL INVESTIGATION [J].
DUSSAN, EB ;
RAME, E ;
GAROFF, S .
JOURNAL OF FLUID MECHANICS, 1991, 230 :97-116
[10]  
ERDELYI A, 1956, ASYMPTOTIC EXPANSION, P36