AN ASYMPTOTICALLY DISTRIBUTION-FREE TEST FOR SYMMETRY VERSUS ASYMMETRY

被引:134
作者
RANDLES, RH [1 ]
FLIGNER, MA [1 ]
POLICELLO, GE [1 ]
WOLFE, DA [1 ]
机构
[1] OHIO STATE UNIV,DEPT STAT,COLUMBUS,OH 43210
关键词
D O I
10.2307/2287406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:168 / 172
页数:5
相关论文
共 12 条
[1]  
CRAMER H, 1946, MATH METHODS STATIST
[2]   U-STATISTICS FOR SKEWNESS OR SYMMETRY [J].
DAVIS, CE ;
QUADE, D .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1978, 7 (05) :413-418
[3]   PLOTS AND TESTS FOR SYMMETRY [J].
DOKSUM, KA ;
FENSTAD, G ;
AABERGE, R .
BIOMETRIKA, 1977, 64 (03) :473-487
[4]   SIGN TEST FOR SYMMETRY [J].
GASTWIRTH, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (336) :821-823
[5]  
GEARY RC, 1947, BIOMETRIKA, V34, P209, DOI 10.1093/biomet/34.3-4.209
[6]   AN ASYMPTOTICALLY NONPARAMETRIC TEST OF SYMMETRY [J].
GUPTA, MK .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03) :849-&
[7]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[8]   The limits of a measure of skewness [J].
Hotelling, H ;
Solomon, LM .
ANNALS OF MATHEMATICAL STATISTICS, 1932, 3 :141-142
[9]   CONSISTENCY AND UNBIASEDNESS OF CERTAIN NONPARAMETRIC TESTS [J].
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (02) :165-179
[10]  
LOCKE C, 1976, BIOMETRIKA, V63, P143