PERIODIC-SOLUTIONS AND BIFURCATION STRUCTURE AT HIGH-R IN THE LORENTZ MODEL

被引:83
作者
ROBBINS, KA
机构
关键词
D O I
10.1137/0136035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stable periodic solution of the Lorenz system in the limit as R yields infinity is computed as a fixed point of a Poincare mapping. The solution is shown to exist for finite R by application of the implicit function theorem. Successive bifurcations as R is decreased to the nonperiodic regime are examined numerically.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 10 条
[1]  
HENON M, 1976, TURBULENCE NAVIER ST, P29
[2]  
HOWARD LN, 1974 SUMMER STUDY PR
[3]  
KAPLAN J, PRETURBULENCE METAST
[4]  
LI TY, 1976, SIMPLEST DYNAMICAL S, V2
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]  
Marsden JE, 2012, SPRINGER SCI BUSINES, DOI DOI 10.1137/1020063
[8]   SUCCESSIVE BIFURCATIONS LEADING TO STOCHASTIC BEHAVIOR [J].
MCLAUGHLIN, J .
JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (04) :307-326
[9]   MOMENT EQUATION DESCRIPTION OF MAGNETIC REVERSALS IN EARTH [J].
ROBBINS, KA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (12) :4297-4301
[10]   NEW APPROACH TO SUBCRITICAL INSTABILITY AND TURBULENT TRANSITIONS IN A SIMPLE DYNAMO [J].
ROBBINS, KA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (SEP) :309-325