Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems
被引:0
作者:
Pienaar, Elsje
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USAPurdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
Pienaar, Elsje
[1
]
机构:
[1] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
来源:
BIOMEDICAL ENGINEERING AND COMPUTATIONAL BIOLOGY
|
2018年
/
9卷
基金:
美国国家科学基金会;
关键词:
Monte Carlo;
Markov chain;
stochastic models;
multifidelity;
rare events;
D O I:
10.1177/1179597218790253
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Rare events such as genetic mutations or cell-cell interactions are important contributors to dynamics in complex biological systems. eg, in drug-resistant infections. Computational approaches can help analyze rare events that are difficult to study experimentally. However. analyzing the frequency and dynamics of rare events in computational models can also be challenging due to high computational resource demands, especially for high-fidelity stochastic computational models. To facilitate analysis of rare events in complex biological systems, we present a multifidelity analysis approach that uses medium-fidelity analysis (Monte Carlo simulations) and/or low-fidelity analysis (Markov chain models) to analyze high-fidelity stochastic model results. Medium-fidelity analysis can produce large numbers of possible rare event trajectories for a single high-fidelity model simulation. This allows prediction of both rare event dynamics and probability distributions at much lower frequencies than high-fidelity models. Low-fidelity analysis can calculate probability distributions for rare events over time for any frequency by updating the probabilities of the rare event state space after each discrete event of the high-fidelity model. To validate the approach. we apply multifidelity analysis to a high-fidelity model of tuberculosis disease. We validate the method against high-fidelity model results and illustrate the application of multifidelity analysis in predicting rare event trajectories, performing sensitivity analyses and extrapolating predictions to very low frequencies in complex systems. We believe that our approach will complement ongoing efforts to enable accurate prediction of rare event dynamics in high-fidelity computational models.
机构:
Rutgers State Univ, Publ Hlth Res Inst, Newark, NJ 07103 USA
Rutgers State Univ, New Jersey Med Sch, Newark, NJ 07103 USARutgers State Univ, Publ Hlth Res Inst, Newark, NJ 07103 USA
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Donovan, Rory M.
Tapia, Jose-Juan
论文数: 0引用数: 0
h-index: 0
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Tapia, Jose-Juan
Sullivan, Devin P.
论文数: 0引用数: 0
h-index: 0
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Sullivan, Devin P.
Faeder, James R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Faeder, James R.
Murphy, Robert F.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Murphy, Robert F.
Dittrich, Markus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USA
Pittsburgh Supercomp Ctr, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Dittrich, Markus
Zuckerman, Daniel M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
机构:
Rutgers State Univ, Publ Hlth Res Inst, Newark, NJ 07103 USA
Rutgers State Univ, New Jersey Med Sch, Newark, NJ 07103 USARutgers State Univ, Publ Hlth Res Inst, Newark, NJ 07103 USA
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Donovan, Rory M.
Tapia, Jose-Juan
论文数: 0引用数: 0
h-index: 0
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Tapia, Jose-Juan
Sullivan, Devin P.
论文数: 0引用数: 0
h-index: 0
机构:
Joint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Sullivan, Devin P.
Faeder, James R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Faeder, James R.
Murphy, Robert F.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Murphy, Robert F.
Dittrich, Markus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USA
Pittsburgh Supercomp Ctr, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA
Dittrich, Markus
Zuckerman, Daniel M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USAJoint CMU Pitt PhD Program Computat Biol, Pittsburgh, PA USA