HAMILTONIAN-FORMULATION OF LOW-FREQUENCY, NONLINEAR PLASMA DYNAMICS

被引:65
作者
KUVSHINOV, BN [1 ]
PEGORARO, F [1 ]
SCHEP, TJ [1 ]
机构
[1] IV KURCHATOV ATOM ENERGY INST,RUSSIAN SCI CTR,MOSCOW,RUSSIA
基金
欧盟地平线“2020”;
关键词
D O I
10.1016/0375-9601(94)90143-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a set of equations that governs the linear and nonlinear evolution of plasma phenomena with frequencies below the ion cyclotron and the magneto-sonic and above the ion-acoustic frequencies. Finite electron mass and ion gyroradius effects are taken into account. The spatial scales of the phenomena may range from MI-ID scales down to the inertia electron skin depth. In a high-temperature plasma, this skin depth is smaller than the gyro-radius of a thermal ion. This set describes Alfven and drift vortices, magnetic islands and current sheets. These equations can be cast in (noncanonical) Hamiltonian form. It is shown that infinite sets of conserved quantities (Casimirs) exist that reduce to the Casimirs of 2-D reduced MHD in the appropriate limit. Sufficient conditions for stability are discussed on the basis of the second variation, at constant Casimirs, of the Hamiltonian functional.
引用
收藏
页码:296 / 300
页数:5
相关论文
共 16 条
[1]  
Arnol'd V.I., 1965, J APPL MATH MECH, V29, P1002, DOI [10.1016/0021-8928(65)90119-X, DOI 10.1016/0021-8928(65)90119-X]
[2]   ION GYRO-RADIUS EFFECTS + STABILIZATION OF PLASMA DISSIPATIVE MODES [J].
COPPI, B .
PHYSICAL REVIEW LETTERS, 1964, 12 (15) :417-&
[3]  
GRUZINOV AV, 1993, IFSR600 U TEX I FUS
[4]   HAMILTONIAN 4-FIELD MODEL FOR NONLINEAR TOKAMAK DYNAMICS [J].
HAZELTINE, RD ;
HSU, CT ;
MORRISON, PJ .
PHYSICS OF FLUIDS, 1987, 30 (10) :3204-3211
[5]  
HAZELTINE RD, 1984, 1984 P ICCP LAUS, V1, P203
[6]  
Isichenko M. B., 1987, Soviet Physics - JETP, V66, P702
[7]  
ISICHENKO MB, 1987, ZH EKSP TEOR FIZ+, V93, P1244
[8]  
KADOMTSEV BB, 1973, ZH EKSP TEOR FIZ+, V65, P575
[9]  
KADOMTSEV BB, 1974, ZH EKSP TEOR FIZ, V38, P283
[10]  
MIKHAILOVSKII AB, 1967, SOV PHYS JETP-USSR, V25, P623