The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations

被引:15
|
作者
Zhang, Sheng [1 ]
Liu, Dong-Dong [1 ]
机构
[1] Bohai Univ, Sch Math & Phys, Jinzhou, Peoples R China
来源
TURKISH JOURNAL OF PHYSICS | 2015年 / 39卷 / 02期
关键词
Darboux transformation; multisoliton solution; spectral problem; generalized Broer-Kaup equations;
D O I
10.3906/fiz-1411-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the third kind of Darboux transformation of generalized Broer-Kaup equations is derived from the corresponding spectral problem. By virtue of this Darboux transformation, new 2N-soliton solutions with parameters of the generalized Broer-Kaup equations are obtained. Although 2N is an even number, it is graphically shown that in the cases of N=1 and N= 2 the obtained 2N-soliton solutions can degenerate into M-soliton solutions for any positive integer M less than 2N.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 50 条
  • [31] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [32] Darboux transformation and soliton-like solutions for a generalized q-KdV hierarchy
    Fan, E
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (11) : 2991 - 2995
  • [33] Generalized Darboux transformation and higher-order rogue wave solutions to the Manakov system
    Mukam, Serge P.
    Abbagari, Souleymanou
    Houwe, Alphonse
    Kuetche, Victor K.
    Inc, Mustafa
    Doka, Serge Y.
    Bouetou, Thomas B.
    Akinlar, Mehmet Ali
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (25):
  • [34] Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations
    Wang, Xin
    Liu, Chong
    Wang, Lei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1534 - 1552
  • [35] Darboux Transformation and Soliton Solutions for Inhomogeneous Coupled Nonlinear Schrodinger Equations with Symbolic Computation
    Xue Yu-Shan
    Tian Bo
    Zhang Hai-Qiang
    Liu Wen-Jun
    Li Li-Li
    Qi Feng-Hua
    Zhan Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (05) : 888 - 896
  • [36] Darboux transformation of a new generalized nonlinear Schrödinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Yaning Tang
    Chunhua He
    Meiling Zhou
    Nonlinear Dynamics, 2018, 92 : 2023 - 2036
  • [37] DARBOUX TRANSFORMATION OF TWO NOVEL TWO-COMPONENT GENERALIZED COMPLEX SHORT PULSE EQUATIONS
    LI, X. I. N. Y. U. E.
    Zhang, Z. H. I. X. I. N.
    Zhao, Q. I. U. L. A. N.
    LI, C. H. U. A. N. Z. H. O. N. G.
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 90 (02) : 157 - 184
  • [39] Darboux transformation of generalized coupled KdV soliton equation and its odd-soliton solutions
    Liu Ping
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (03) : 399 - 407
  • [40] Darboux transformation of generalized coupled KdV soliton equation and its odd-soliton solutions
    Ping Liu
    Applied Mathematics and Mechanics, 2008, 29 : 399 - 407