AUTOMORPHISMS OF TORSION-FREE NILPOTENT GROUPS OF CLASS-2

被引:6
作者
DUGAS, M [1 ]
GOBEL, R [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,W-4300 ESSEN 1,GERMANY
关键词
D O I
10.2307/2154188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct 2-divisible, torsion-free abelian groups G admitting an alternating bilinear map. We use these groups G to find nilpotent groups N of class 2 such that Aut(N) modulo a natural normal subgroup is a prescribed group.
引用
收藏
页码:633 / 646
页数:14
相关论文
共 24 条
[1]   Groups with abelian central quotient group [J].
Baer, Reinhold .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 44 (1-3) :357-386
[2]  
CORNER ALS, 1985, P LOND MATH SOC, V50, P447
[3]  
CORNER ALS, 1991, IN PRESS ABELIAN GRO
[4]   TORSION-FREE NILPOTENT GROUPS AND E-MODULES [J].
DUGAS, M ;
GOBEL, R .
ARCHIV DER MATHEMATIK, 1990, 54 (04) :340-351
[5]   OUTER AUTOMORPHISMS OF GROUPS [J].
DUGAS, M ;
GOBEL, R .
ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (01) :27-46
[6]  
DUGAS M, 1982, P LOND MATH SOC, V45, P319
[7]   ALL INFINITE GROUPS ARE GALOIS-GROUPS OVER ANY FIELD [J].
DUGAS, M ;
GOBEL, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :355-384
[8]  
DUGAS M, 1990, UNPUB SOLUTION P HAL
[9]  
HALL P, 1966, P LOND MATH SOC, V16, P1
[10]  
HALL PETER, 1958, ILLINOIS J MATH, V2, P787