A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN

被引:13
作者
BARRETT, JW [1 ]
ELLIOTT, CM [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
D O I
10.1007/BF01399693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
[21]   The finite element approximation of a 2D maxwell eigenvalue problem in a domain with curved boundaries [J].
Hamelinck, Wouter ;
Van Keer, Roger .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 :252-+
[22]   FINITE ELEMENT APPROXIMATION OF THE VIBRATION PROBLEM FOR A TIMOSHENKO CURVED ROD [J].
Hernandez, E. ;
Otarola, E. ;
Rodriguez, R. ;
Sanhueza, F. .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (01) :15-28
[23]   Finite element approximation of the elasticity spectral problem on curved domains [J].
Hernandez, Erwin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) :452-458
[24]   APPLICATION OF FINITE-ELEMENT METHOD TO APPROXIMATION OF OPTIMAL DOMAIN PROBLEM - SOLUTION METHODS FOR APPROXIMATED PROBLEMS [J].
BEGIS, D ;
GLOWINSKI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1975, 2 (02) :130-169
[25]   Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks [J].
Belhachmi, Zakaria ;
Bucur, Dorin ;
Sac-Epee, Jean-Marc .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) :790-810
[26]   APPROXIMATION OF THE SIGNORINI PROBLEM WITH FRICTION BY A MIXED FINITE-ELEMENT METHOD [J].
HASLINGER, J ;
HLAVACEK, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (01) :99-122
[27]   ON THE FINITE-ELEMENT APPROXIMATION FOR MAXWELLS PROBLEM IN POLYNOMIAL DOMAINS OF THE PLANE [J].
NEITTAANMAKI, P ;
SARANEN, J .
APPLICABLE ANALYSIS, 1981, 12 (01) :73-83
[28]   FINITE-ELEMENT APPROXIMATION OF A SHAPE OPTIMIZATION PROBLEM FOR VONKARMAN SYSTEM [J].
MYSLINSKI, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (7-8) :691-717
[29]   A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN [J].
Ming, Pingbing ;
Xu, Xianmin .
MULTISCALE MODELING & SIMULATION, 2016, 14 (04) :1276-1300
[30]   Finite element approximation of the pure Neumann problem using the iterative penalty method [J].
Dai, Xiaoxia .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1367-1373