Exponentially Fitted Variants of the Two-Step Adams-Bashforth Method for the Numerical Integration of Initial Problems

被引:0
作者
Singh, Gurjinder [1 ]
Kanwar, V. [1 ]
Bhatia, Saurabh [1 ]
机构
[1] Panjab Univ, Univ Inst Engn & Technol, Chandigarh 160014, India
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2013年 / 8卷 / 02期
关键词
Ordinary differential equations; Initial value problems; Stability; Osculating curve;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose new variants of the two-step Adams-Bashforth and the one-step Adams-Moulton methods for the numerical integration of ordinary differential equations (ODEs). The methods are constructed geometrically from an exponentially fitted osculating parabola. The accuracy and stability of the proposed variants is discussed and their applicability to some initial value problems is also considered. Numerical experiments demonstrate that the exponentially fitted variants of the two-step Adams-Bashforth and the one-step Adams- Moulton methods outperform the existing classical two-step Adams-Bashforth and one-step Adams-Moulton methods respectively.
引用
收藏
页码:741 / 755
页数:15
相关论文
共 13 条
[1]   A collocation formulation of multistep methods for variable step-size extensions [J].
Arévalo, C ;
Führer, C ;
Selva, M .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :5-16
[2]  
Atkinson KE., 1989, INTRO NUMERICAL ANAL
[3]  
Butcher J.C., 2008, NUMERICAL METHODS OR
[4]   SECOND DERIVATIVE MULTISTEP METHODS FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS [J].
ENRIGHT, WH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (02) :321-331
[5]  
Hairer E., 1993, SOLVING ORDINARY DIF, V2nd edn
[6]  
Hairer E., 2002, SPRINGER SERIES COMP, V2nd edn
[7]  
Ikhile MNO, 2004, COMPUT MATH APPL, V47, P1463, DOI 10.1016/j.camwa.2004.04.028
[8]  
Iserles A., 2009, 1 COURSE NUMERICAL A, V44
[9]  
Jain M.K., 2012, NUMERICAL METHODS SC
[10]  
Lambert J. D., 1991, NUMERICAL METHODS OR