Combining Spatial Independent Component Analysis with Regression to Identify the Subcortical Components of Resting-State fMRI Functional Networks

被引:6
作者
Malherbe, Caroline [1 ,2 ]
Messe, Arnaud [1 ,2 ]
Bardinet, Eric [2 ,3 ,4 ]
Pelegrini-Issac, Melanie [1 ,2 ]
Perlbarg, Vincent [1 ,2 ]
Marrelec, Guillaume [1 ,2 ]
Worbe, Yulia [2 ,3 ,5 ]
Yelnik, Jerome [3 ,5 ]
Lehericy, Stephane [2 ,3 ,4 ]
Benali, Habib [1 ,2 ]
机构
[1] UPMC Univ Paris 6, INSERM, Lab Imagerie Fonct, UMR S 678, Paris, France
[2] Univ Paris 11, IFR 49, DSV, I2BM Neurospin, Gif Sur Yvette, France
[3] UPMC Univ Paris 6, Inst Cerveau & Moelle Epiniere, CNRS, INSERM,Ctr Rech,UMR S 975,UMR 7225, Paris, France
[4] Grp Hosp Pitie Salpetriere, Ctr NeuroImagerie Rech, CENIR, Paris, France
[5] Grp Hosp Pitie Salpetriere, AP HP, Ctr Invest Clin, INSERM,Pole Malad Syst Nerveux,CIC 9503, Paris, France
关键词
brain networks; fMRI; regression; resting-state; spatial independent component analysis; subcortex;
D O I
10.1089/brain.2013.0160
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional brain networks are sets of cortical, subcortical, and cerebellar regions whose neuronal activities are synchronous over multiple time scales. Spatial independent component analysis (sICA) is a widespread approach that is used to identify functional networks in the human brain from functional magnetic resonance imaging (fMRI) resting-state data, and there is now a general agreement regarding the cortical regions involved in each network. It is well known that these cortical regions are preferentially connected with specific subcortical functional territories; however, subcortical components (SC) have not been observed whether in a robust or in a reproducible manner using sICA. This article presents a new method to analyze resting-state fMRI data that enables robust and reproducible association of subcortical regions with well-known patterns of cortical regions. The approach relies on the hypothesis that the time course in subcortical regions is similar to that in cortical regions belonging to the same network. First, sICA followed by hierarchical clustering is performed on cortical time series to extract group functional cortical networks. Second, these networks are complemented with related subcortical areas based on the similarity of their time courses, using an individual general linear model and a random-effect group analysis. Two independent resting-state fMRI datasets were processed, and the SC of both datasets overlapped by 69% to 99% depending on the network, showing the reproducibility and the robustness of our approach. The relationship between SC and functional cortical networks was consistent with functional territories (sensorimotor, associative, and limbic) from an immunohistochemical atlas of the basal ganglia.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 32 条
[1]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[2]   A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease [J].
Bardinet, Eric ;
Bhattacharjee, Manik ;
Dormont, Didier ;
Pidoux, Bernard ;
Malandain, Gregoire ;
Schupbach, Michael ;
Ayache, Nicholas ;
Cornu, Philippe ;
Agid, Yves ;
Yelnik, Jerome .
JOURNAL OF NEUROSURGERY, 2009, 110 (02) :208-219
[3]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[4]   Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging [J].
Behrens, TEJ ;
Johansen-Berg, H ;
Woolrich, MW ;
Smith, SM ;
Wheeler-Kingshott, CAM ;
Boulby, PA ;
Barker, GJ ;
Sillery, EL ;
Sheehan, K ;
Ciccarelli, O ;
Thompson, AJ ;
Brady, JM ;
Matthews, PM .
NATURE NEUROSCIENCE, 2003, 6 (07) :750-757
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   Independent component analysis in the presence of noise in fMRI [J].
Cordes, Dietmar ;
Nandy, Rajesh .
MAGNETIC RESONANCE IMAGING, 2007, 25 (09) :1237-1248
[8]   Reduced resting-state brain activity in the "default network" in normal aging [J].
Damoiseaux, J. S. ;
Beckmann, C. F. ;
Arigita, E. J. Sanz ;
Barkhof, F. ;
Scheltens, Ph. ;
Stam, C. J. ;
Smith, S. M. ;
Rombouts, S. A. R. B. .
CEREBRAL CORTEX, 2008, 18 (08) :1856-1864
[9]   Consistent resting-state networks across healthy subjects [J].
Damoiseaux, J. S. ;
Rombouts, S. A. R. B. ;
Barkhof, F. ;
Scheltens, P. ;
Stam, C. J. ;
Smith, S. M. ;
Beckmann, C. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (37) :13848-13853
[10]   Independent component analysis for brain fMRI does not select for independence [J].
Daubechies, I. ;
Roussos, E. ;
Takerkart, S. ;
Benharrosh, M. ;
Golden, C. ;
D'Ardenne, K. ;
Richter, W. ;
Cohen, J. D. ;
Haxby, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (26) :10415-10422