AN ALGORITHM FOR ISOTONIC REGRESSION WITH ARBITRARY CONVEX DISTANCE FUNCTION

被引:17
|
作者
STROMBERG, U [1 ]
机构
[1] UNIV LUND,DEPT MATH STAT,S-22100 LUND,SWEDEN
关键词
ISOTONIC REGRESSION; DISTANCE FUNCTION; POOL-ADJACENT-VIOLATORS ALGORITHM; FRACTILE;
D O I
10.1016/0167-9473(91)90072-A
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper we consider the isotonic regression problem with an arbitrary convex distance function d(.), and the main purpose being to present an algorithm for obtaining all isotonic regressions under this reasonable assumption on d(.). Further, we consider a piece-wise linear distance function d(.) of the type d(t) = C-\t\ for t < 0 and d(t) = C+ \t\ for t greater-than-or-equal-to 0 and get an isotonic pth frctile regression by choosing p = C+ /(C- + C+).
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [21] Reliably Calibrated Isotonic Regression
    Nyberg, Otto
    Klami, Arto
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 578 - 589
  • [22] Modelling of Arbitrary Shaped Channels and Obstacles by Distance Function
    Duracikova, Kristina Kovalcikova
    Buganova, Alzbeta
    Cimrak, Ivan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT I, 2022, : 28 - 41
  • [23] Convexity of the Distance Function to Convex Subsets of Riemannian Manifolds
    Khajehpour, Solmaz
    Pouryayevali, Mohamad R.
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1321 - 1336
  • [24] Analyzing an extension of the isotonic regression problem
    J. Santos Domínguez-Menchero
    Gil González-Rodríguez
    Metrika, 2007, 66 : 19 - 30
  • [25] Isotonic Regression under Lipschitz Constraint
    Yeganova, L.
    Wilbur, W. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 429 - 443
  • [26] M-estimators for isotonic regression
    Alvarez, Enrique E.
    Yohai, Victor J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (08) : 2351 - 2368
  • [27] Algorithms for a class of isotonic regression problems
    Pardalos, PM
    Xue, G
    ALGORITHMICA, 1999, 23 (03) : 211 - 222
  • [29] Contraction and uniform convergence of isotonic regression
    Yang, Fan
    Barber, Rina Foygel
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 646 - 677
  • [30] THE MINIMAL L(1) ISOTONIC REGRESSION
    SHI, NZ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (01) : 175 - 189