AN ALGORITHM FOR ISOTONIC REGRESSION WITH ARBITRARY CONVEX DISTANCE FUNCTION

被引:17
|
作者
STROMBERG, U [1 ]
机构
[1] UNIV LUND,DEPT MATH STAT,S-22100 LUND,SWEDEN
关键词
ISOTONIC REGRESSION; DISTANCE FUNCTION; POOL-ADJACENT-VIOLATORS ALGORITHM; FRACTILE;
D O I
10.1016/0167-9473(91)90072-A
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper we consider the isotonic regression problem with an arbitrary convex distance function d(.), and the main purpose being to present an algorithm for obtaining all isotonic regressions under this reasonable assumption on d(.). Further, we consider a piece-wise linear distance function d(.) of the type d(t) = C-\t\ for t < 0 and d(t) = C+ \t\ for t greater-than-or-equal-to 0 and get an isotonic pth frctile regression by choosing p = C+ /(C- + C+).
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [1] An O(n2) Algorithm for Isotonic Regression
    Burdakov, O
    Sysoev, O
    Grimvall, A
    Hussian, M
    LARGE-SCALE NONLINEAR OPTIMIZATION, 2006, 83 : 25 - +
  • [2] Non-convex isotonic regression via the Myersonian approach
    Cui, Zhenyu
    Lee, Chihoon
    Zhu, Lingjiong
    Zhu, Yunfan
    STATISTICS & PROBABILITY LETTERS, 2021, 179
  • [3] The limiting behavior of isotonic and convex regression estimators when the model is misspecified
    Lim, Eunji
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2053 - 2097
  • [4] Isotonic regression and isotonic projection
    Nemeth, A. B.
    Nemeth, S. Z.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 : 80 - 89
  • [5] A dual active set algorithm for optimal sparse convex regression
    Gudkov, A. A.
    Mironov, S. V.
    Sidorov, S. P.
    Tyshkevich, S. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (01): : 113 - 130
  • [6] ITERATIVE ISOTONIC REGRESSION
    Guyader, Arnaud
    Hengartner, Nick
    Jegou, Nicolas
    Matzner-Lober, Eric
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 1 - 23
  • [7] The bias of isotonic regression
    Dai, Ran
    Song, Hyebin
    Barber, Rina Foygel
    Raskutti, Garvesh
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 801 - 834
  • [8] Nearly-Isotonic Regression
    Tibshirani, Ryan J.
    Hoefling, Holger
    Tibshirani, Robert
    TECHNOMETRICS, 2011, 53 (01) : 54 - 61
  • [9] Bayesian isotonic density regression
    Wang, Lianming
    Dunson, David B.
    BIOMETRIKA, 2011, 98 (03) : 537 - 551
  • [10] Isotonic regression meets LASSO
    Neykov, Matey
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 710 - 746