PRODUCT OF WEIGHTED HANKEL AND WEIGHTED TOEPLITZ OPERATORS

被引:0
作者
Datt, Gopal [1 ]
Porwal, Deepak Kumar [1 ]
机构
[1] Univ Delhi, Pgdav Coll, Dept Math, Delhi 110065, India
关键词
Toeplitz operator; Hankel operator; weighted Hankel operator; weighted Toeplitz operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss some properties of the weighted Hankel operator H-psi(beta) and describe the conditions on which the weighted Hankel operator H-psi(beta) and weighted Toeplitz operator T-psi(beta), with phi,psi epsilon L-infinity (beta) on the space H-2 (beta), beta = {beta(n)}(n) subset of Z being a sequence of positive numbers with beta(0) = 1, commute. It is also proved that if a non- zero weighted Hankel operator H-psi(beta) commutes with T-psi(beta) , which is not a multiple of the identity, then H-psi(beta)= mu T-phi(beta), for some mu epsilon C.
引用
收藏
页码:571 / 583
页数:13
相关论文
共 11 条
[1]  
Avendano R. A. Martinez, 2000, THESIS
[2]  
Brown A., 1963, J REINE ANGEW MATH, V213, P89
[3]  
Datt G., 2013, J ADV RES PURE MATH, V5, P59
[4]  
Halmos PR., 1982, HILBERT SPACE PROBLE, DOI 10.1007/978-1-4684-9330-6
[5]  
Ho MC, 1996, INDIANA U MATH J, V45, P843
[6]  
Lauric V., 2005, IJMMS, V6, P823, DOI DOI 10.1155/IJMMS.2005.823
[7]   ON BOUNDED BILINEAR FORMS [J].
NEHARI, Z .
ANNALS OF MATHEMATICS, 1957, 65 (01) :153-162
[8]  
Power S.C., 1980, B LOND MATH SOC, V12, P422
[9]  
SARASON D, 1973, ACTA SCI MATH, V35, P7
[10]  
Sarason D., 1998, MATH SCI RES I PUBL, V33, P1