A NEW DOMINATION CONCEPTION

被引:23
作者
STRACKE, C
VOLKMANN, L
机构
[1] Rwth Aachen, Aachen
关键词
D O I
10.1002/jgt.3190170306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be an integer valued function defined on the vertex set V(G) of a simple graph G. We call a subset Df of V(G) a f-dominating set of G if \N(x, G) and D(f)\ greater-than-or-equal-to f(x) for all x is-an-element-of V(G) - D(f), where N(x, G) is the set of neighbors of x. D(f) is a minimum f-dominating set if G has no f-dominating set D(f)' with \D(f)'\ < \D(f)\. If j,k is-an-element-of N0 = {0, 1, 2,....} with j less-than-or-equal-to k, then we define the integer valued function f(j,k) on V(G) by [GRAPHICS] By mu(j,k)(G) we denote the cardinality of a minimum f(j,k)-dominating set of G. A set D subset-or-equal-to V(G) is j-dominating if every vertex, which is not in D, is adjacent to at least j vertices of D. The j-domination number gamma(j)(G) is the minimum order of a j-dominating set in G. In this paper we shall give estimations of the new domination number mu(j,k(G), and with the help of these estimations we prove some new and some known upper bounds for the j-domination number.
引用
收藏
页码:315 / 323
页数:9
相关论文
共 7 条
[1]  
Caro Y., 1990, INT J MATH MATH SCI, V13, P205
[2]   AN UPPER BOUND FOR THE K-DOMINATION NUMBER OF A GRAPH [J].
COCKAYNE, EJ ;
GAMBLE, B ;
SHEPHERD, B .
JOURNAL OF GRAPH THEORY, 1985, 9 (04) :533-534
[3]   ON A CONJECTURE OF FINK AND JACOBSON CONCERNING KAPPA-DOMINATION AND KAPPA-DEPENDENCE [J].
FAVARON, O .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (01) :101-102
[4]  
Fink J. F., 1985, GRAPH THEORY APPL AL, P301
[5]  
Fink J. F., 1985, GRAPH THEORY APPL AL, P283
[6]  
Ore O., 1962, THEORY GRAPHS
[7]  
VOLKMANN L, 1991, GRAPHEN DIGRAPHEN EI