New Nomographic Solutions in the Newtonian Many-Body Problem

被引:0
|
作者
Grebenikov, E. A. [1 ]
Zemtsova, N. I. [1 ]
机构
[1] Russian Acad Sci, Dorodnitsyn Comp Ctr, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1547477111050104
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The problem of the existence of concentric central configurations, geometrically presented by regular n-and 2n-sided polygons nested in one another, is investigated. The necessary and sufficient conditions for the existence of these central configurations are derived using computer algebra.
引用
收藏
页码:428 / 430
页数:3
相关论文
共 50 条
  • [31] Numerical Exact Solutions to the Many-body Problem Based on the Differential Forms
    Kondo S.-I.
    Kazuyoshi Y.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2023, 70 (06): : 281 - 289
  • [32] Power functional theory for Newtonian many-body dynamics
    Schmidt, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (04):
  • [33] NEW IDENTITY IN GREENS FUNCTION APPROACH TO MANY-BODY PROBLEM
    PIKE, ER
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1964, 84 (5371): : 83 - &
  • [34] A Solvable Many-Body Problem in the Plane
    F. Calogero
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 289 - 293
  • [35] Hill stability in the many-body problem
    L. G. Luk’yanov
    L. P. Nasonova
    G. I. Shirmin
    Astronomy Letters, 2003, 29 : 274 - 277
  • [36] DENSITY MATRICES IN MANY-BODY PROBLEM
    GLUCK, P
    PHYSICAL REVIEW, 1968, 176 (05): : 1534 - &
  • [37] Proteins: A challenging many-body problem
    Frauenfelder, H
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1996, 74 (05): : 579 - 585
  • [38] The electron many-body problem in graphene
    Uchoa, Bruno
    Reed, James P.
    Gan, Yu
    Joe, Young Il
    Fradkin, Eduardo
    Abbamonte, Peter
    Casa, Diego
    PHYSICA SCRIPTA, 2012, T146
  • [39] VARIATIONAL APPROACH TO THE MANY-BODY PROBLEM
    AYRES, RU
    PHYSICAL REVIEW, 1958, 111 (06): : 1453 - 1460
  • [40] THE MANY-BODY PROBLEM AND THE BRUECKNER APPROXIMATION
    RODBERG, LS
    ANNALS OF PHYSICS, 1957, 2 (03) : 199 - 225